Skip to main content Accessibility help

Bridging local to global dynamics of drop impact onto solid substrates

  • H. Lastakowski (a1), F. Boyer (a1), A.-L. Biance (a1), C. Pirat (a1) and C. Ybert (a1)...


The shape of impacting drops onto a solid surface is investigated by probing the local flow velocity and the local thickness profile of the spreading lamella during the drop impact. First, as a model situation of no viscous coupling between the liquid and the substrate, the impact of a drop onto hot plates, above the Leidenfrost temperature, is considered. In this case, we demonstrate that the velocity and thickness profiles are in good agreement with inviscid convective flow theory. This local description allows us to revisit the modelling of well-studied global behaviour such as drop spreading. Building from this idealized situation, viscous boundary-layer effects emerging from frictional coupling on a cold surface are then captured.


Corresponding author

Email address for correspondence:


Hide All
Bakshi, S., Roisman, I. V. & Tropea, C. 2007 Investigations on the impact of a drop onto a small spherical target. Phys. Fluids 19 (3), 032102.
Biance, A. L., Chevy, F., Clanet, C., Lagubeau, G. & Quere, D. 2006 On the elasticity of an inertial liquid shock. J. Fluid Mech. 554, 4766.
Biance, A. L., Clanet, C. & Quere, D. 2003 Leidenfrost drops. Phys. Fluids 15 (6), 16321636.
Biance, A. L., Pirat, C. & Ybert, C. 2011 Drop fragmentation due to hole formation during leidenfrost impact. Phys. Fluids 23 (2), 022104.
Bussmann, M., Chandra, S. & Mostaghimi, J. 2000 Modeling the splash of a droplet impacting a solid surface. Phys. Fluids 12, 31213132.
Chandra, S. & Avedisian, C. T. 1991 On the collision of a droplet with a solid surface. Proc. R. Soc. Lond. A 432, 1341.
Clanet, C., Beguin, C., Richard, D. & Quere, D. 2004 Maximal deformation of an impacting drop. J. Fluid Mech. 517, 199208.
Culick, F. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.
de Ruiter, J., Oh, J. M., van den Ende, D. & Mugele, F. 2012 Dynamics of collapse of air films in drop impact. Phys. Rev. Lett. 108, 074505.
Driscoll, M. M. & Nagel, S. R. 2011 Ultrafast interference imaging of air in splashing dynamics. Phys. Rev. Lett. 107, 154502.
Eggers, J., Fontelos, M. A., Josserand, C. & Zaleski, S. 2010 Drop dynamics after impact on a solid wall: theory and simulations. Phys. Fluids 22, 062101.
Kolinski, J. M., Rubinstein, S. M., Mandre, S., Brenner, M. P., Weitz, D. A. & Mahadevan, L. 2012 Skating on a film of air: drops impacting on a surface. Phys. Rev. Lett. 108, 074503.
Lagubeau, G., Fontelos, M. A., Josserand, C., Maurel, A., Pagneux, V. & Petitjeans, P. 2012 Spreading dynamics of drop impacts. J. Fluid Mech. 713, 5060.
Latka, A., Strandburg-Peshkin, A., Driscoll, M. M., Stevens, C. S. & Nagel, S. R. 2012 Creation of prompt and thin-sheet splashing by varying surface roughness or increasing air pressure. Phys. Rev. Lett. 109, 054501.
Mandre, S., Mani, M. & Brenner, M. P. 2009 Precursors to splashing of liquid droplets on a solid surface. Phys. Rev. Lett. 102, 134502.
Range, K. & Feuillebois, F. 1998 Influence of surface roughness on liquid drop impact. J. Colloid Interface Sci. 203, 1630.
Richard, D., Clanet, C. & Quere, D. 2002 Surface phenomena—contact time of a bouncing drop. Nature 417, 811.
Rioboo, R., Marengo, M. & Tropea, C. 2002 Time evolution of liquid drop impact onto solid, dry surfaces. Exp. Fluids 33, 112124.
Roisman, I. V. 2009 Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film. Phys. Fluids 21 (5), 052104.
Roisman, I. V., Berberovic, E. & Tropea, C. 2009 Inertia dominated drop collisions. I. On the universal flow in the lamella. Phys. Fluids 21, 052103.
Roisman, Ilia. V., Rioboo, R. & Tropea, C. 2002 Normal impact of a liquid drop on a dry surface: model for spreading and receding. Proc. R. Soc. Lond. A 458 (2022), 14111430.
Schroll, R. D., Josserand, C., Zaleski, S. & Zhang, W. W. 2010 Impact of a viscous liquid drop. Phys. Rev. Lett. 104, 034504.
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. 3. Disintegration of fluid sheets. Proc. R. Soc. A 253, 313321.
Tran, T., Staat, H. J. J., Prosperetti, A., Sun, C. & Lohse, D. 2012 Drop impact on superheated surfaces. Phys. Rev. Lett. 108, 036101.
van der Veen, R. C. A., Tran, T., Lohse, D. & Sun, C. 2012 Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys. Rev. E 85, 026315.
Villermaux, E. & Bossa, B. 2011 Drop fragmentation on impact. J. Fluid Mech. 668, 412435.
Wachters, L. H. & Westerling, N. A. 1966 Heat transfer from a hot wall to impinging water drops in spheroidal state. Chem. Engng Sci. 21, 10471056.
Willis, K. & Orme, M. 2003 Binary droplet collisions in a vacuum environment: an experimental investigation of the role of viscosity. Exp. Fluids 34, 2841.
Worthington, A. M. 1876 On the form assumed by drops of liquids falling vertically on horizontal plate. Proc. R. Soc. 25, 261271.
Xu, L. 2007 Liquid drop splashing on smooth, rough, and textured surfaces. Phys. Rev. E 75, 056316.
Xu, L., Zhang, W. W. & Nagel, S. R. 2005 Drop splashing on a dry smooth surface. Phys. Rev. Lett. 94, 184505.
Yarin, A. L. 2006 Drop impact dynamics: splashing, spreading, receding, bouncing…. Annu. Rev. Fluid Mech. 38, 159192.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed