Skip to main content Accessibility help

Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow

  • Giovanni Soligo (a1) (a2), Alessio Roccon (a1) (a2) and Alfredo Soldati (a1) (a2)


In this work, we compute numerically breakage/coalescence rates and size distribution of surfactant-laden droplets in turbulent flow. We use direct numerical simulation of turbulence coupled with a two-order-parameter phase-field method to describe droplets and surfactant dynamics. We consider two different values of the surface tension (i.e. two values for the Weber number, $We$ , the ratio between inertial and surface tension forces) and four types of surfactant (i.e. four values of the elasticity number, $\unicode[STIX]{x1D6FD}_{s}$ , which defines the strength of the surfactant). Stretching, breakage and merging of droplet interfaces are controlled by the complex interplay among shear stresses, surface tension and surfactant distribution, which are deeply intertwined. Shear stresses deform the interface, changing the local curvature and thus surface tension forces, but also advect surfactant over the interface. In turn, local increases of surfactant concentration reduce surface tension, changing the interface deformability and producing tangential (Marangoni) stresses. Finally, the interface feeds back to the local shear stresses via the capillary stresses, and changes the local surfactant distribution as it deforms, breaks and merges. We find that Marangoni stresses have a major role in restoring a uniform surfactant distribution over the interface, contrasting, in particular, the action of shear stresses: this restoring effect is proportional to the elasticity number and is stronger for smaller droplets. We also find that lower surface tension (higher $We$ or higher $\unicode[STIX]{x1D6FD}_{s}$ ) increases the number of breakage events, as expected, but also the number of coalescence events, more unexpected. The increase of the number of coalescence events can be traced back to two main factors: the higher probability of inter-droplet collisions, favoured by the larger number of available droplets, and the decreased deformability of smaller droplets. Finally, we show that, for all investigated cases, the steady-state droplet size distribution is in good agreement with the $-10/3$ power-law scaling (Garrett et al., J. Phys. Oceanogr., vol. 30 (9), 2000, pp. 2163–2171), conforming to previous experimental observations (Deane & Stokes, Nature, vol. 418 (6900), 2002, p. 839) and numerical simulations (Skartlien et al., J. Chem. Phys., vol. 139 (17), 2013).


Corresponding author

Email address for correspondence:


Hide All
Allan, R. S., Charles, G. E. & Mason, S. G. 1961 The approach of gas bubbles to a gas/liquid interface. J. Colloid Sci. 16 (2), 150165.
Anderson, D. M., McFadden, G. B. & Wheeler, A. A. 1998 Diffuse interface methods in fluid mechanics. Annu. Rev. Fluid Mech. 30 (1), 139165.
Aris, R. 1989 Vectors, Tensors and the Basic Equations of Fluid Mechanics. Dover Publications.
Babinsky, E. & Sojka, P. E. 2002 Modeling drop size distributions. Prog. Energy Combust. 28, 303329.
Badalassi, V. E., Ceniceros, H. D. & Banerjee, S. 2003 Computation of multiphase systems with phase field models. J. Comput. Phys. 190 (2), 371397.
Bazhlekov, I. B., Anderson, P. D. & Meijer, H. E. 2006 Numerical investigation of the effect of insoluble surfactants on drop deformation and breakup in simple shear flow. J. Colloid Interface Sci. 298 (1), 369394.
Brown, D. E. & Pitt, K. 1972 Drop size distribution of stirred non-coalescing liquid–liquid system. Chem. Engng Sci. 27 (3), 577583.
Brown, W. K. & Wohletz, K. H. 1995 Derivation of the Weibull distribution based on physical principles and its connection to the Rosin–Rammler and lognormal distributions. J. Appl. Phys. 78 (4), 27582763.
Cahn, J. W. & Hilliard, J. E. 1958 Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28, 258267.
Cahn, J. W. & Hilliard, J. E. 1959a Free energy of a nonuniform system. II. Thermodynamic basis. J. Chem. Phys. 30 (5), 11211124.
Cahn, J. W. & Hilliard, J. E. 1959b Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. J. Chem. Phys. 31, 688699.
Calabrese, R. V., Wang, C. Y. & Bryner, N. P. 1986 Drop breakup in turbulent stirred-tank contactors. Part III: correlations for mean size and drop size distribution. AIChE J. 32 (4), 677681.
Canuto, C., Hussaini, M. Y., Quarteroni, A. M. & Zang, T. A. 1988 Spectral Methods in Fluid Dynamics. Springer.
Chang, C. & Franses, E. 1995 Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf. A 100, 145.
Charles, G. E. & Mason, S. G. 1960 The coalescence of liquid drops with flat liquid/liquid interfaces. J. Colloid Sci. 15 (3), 236267.
Chatzi, E. G. & Kiparissides, C. 1994 Drop size distributions in high holdup fraction dispersion systems: effect of the degree of hydrolysis of PVA stabilizer. Chem. Engng Sci. 49 (24), 50395052.
Chen, H. T. & Middleman, S. 1967 Drop size distribution in agitated liquid–liquid systems. AIChE J. 13 (5), 989995.
Chen, N., Kuhl, T., Tadmor, R., Lin, Q. & Israelachvili, J. 2004 Large deformations during the coalescence of fluid interfaces. Phys. Rev. Lett. 92, 024501.
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.
Colella, D., Vinci, D., Bagatin, R., Masi, M. & Bakr, E. A. 1999 A study on coalescence and breakage mechanisms in three different bubble columns. Chem. Engng Sci. 54 (21), 47674777.
Dai, B. & Leal, L. G. 2008 The mechanism of surfactant effects on drop coalescence. Phys. Fluids 20 (4), 113.
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418 (6900), 839.
Deike, L., Melville, W. K. & Popinet, S. 2016 Air entrainment and bubble statistics in breaking waves. J. Fluid Mech. 801, 91129.
Delhaye, J. M. & Bricard, P. 1994 Interfacial area in bubbly flow: experimental data and correlations. Nucl. Engng Des. 151 (1), 6577.
Dodd, M. S. & Ferrante, A. 2016 On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806, 356412.
Eastwood, C. D., Armi, L. & Lasheras, J. C. 2004 The breakup of immiscible fluids in turbulent flows. J. Fluid Mech. 502, 309333.
Eggers, J. 1995 Theory of drop formation. Phys. Fluids 7 (5), 941953.
Eggleton, C. D., Tsai, T. M. & Stebe, K. J. 2001 Tip streaming from a drop in the presence of surfactants. Phys. Rev. Lett. 87 (4), 048302.
Elfring, G. J., Leal, L. G. & Squires, T. M. 2016 Surface viscosity and marangoni stresses at surfactant laden interfaces. J. Fluid Mech. 792, 712739.
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51 (1), 217244.
Engblom, S., Do-Quang, M., Amberg, G. & Tornberg, A. K. 2013 On diffuse interface modeling and simulation of surfactants in two-phase fluid flow. Commun. Comput. Phys. 14 (4), 879915.
Farhat, H., Celiker, F., Singh, T. & Lee, J. S. 2011 A hybrid lattice Boltzmann model for surfactant-covered droplets. Soft Matt. 7 (5), 19681985.
Fedkiw, R. P., Aslam, T., Merriman, B. & Osher, S. 1999 A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys. 152 (2), 457492.
Garrett, C., Li, M. & Farmer, D. 2000 The connection between bubble size spectra and energy dissipation rates in the upper ocean. J. Phys. Oceanogr. 30 (9), 21632171.
Gibou, F., Fedkiw, R. & Osher, S. 2018 A review of level-set methods and some recent applications. J. Comput. Phys. 353, 82109.
He, X., Chen, S. & Zhang, R. 1999 A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 152 (2), 642663.
Herrmann, M. 2011 On simulating primary atomization using the refined level set grid method. Atomiz. Spray 21, 283301.
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.
Hirt, C. W. & Nichols, B. D. 1981 Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39 (1), 201225.
Hsu, C. T., Chang, C. H. & Lin, S. Y. 2000 Study on surfactant adsorption kinetics: effects of interfacial curvature and molecular interaction. Langmuir 16 (3), 12111215.
Hussaini, M. Y. & Zang, T. A. 1987 Spectral methods in fluid dynamics. Annu. Rev. Fluid Mech. 19 (1), 339367.
Jacqmin, D. 1999 Calculation of two-phase Navier–Stokes flows using phase-field modeling. J. Comput. Phys. 155 (1), 96127.
James, A. J. & Lowengrub, J. 2004 A surfactant-conserving volume-of-fluid method for interfacial flows with insoluble surfactant. J. Comput. Phys. 201 (2), 685722.
Ju, H., Jiang, Y., Geng, T., Wang, Y. & Zhang, C. 2017 Equilibrium and dynamic surface tension of quaternary ammonium salts with different hydrocarbon chain length of counterions. J. Mol. Liq. 225, 606612.
Kamat, P. M., Wagoner, B. W., Thete, S. S. & Basaran, O. A. 2018 Role of Marangoni stress during breakup of surfactant-covered liquid threads: reduced rates of thinning and microthread cascades. Phys. Rev. Fluids 3, 043602.
Kamp, J., Villwock, J. & Kraume, M. 2017 Drop coalescence in technical liquid/liquid applications: a review on experimental techniques and modeling approaches. Rev. Chem. Engng 33 (1), 147.
Karabelas, A. J. 1978 Droplet size spectra generated in turbulent pipe flow of dilute liquid/liquid dispersions. AIChE J. 24 (2), 170180.
Kelly, J. E. & Kazimi, M. S. 1982 Interfacial exchange relations for two-fluid vapor–liquid flow: a simplified regime-map approach. Nucl. Sci. Engng 81 (3), 305318.
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177 (1), 133166.
Kiyomi, A. & Fumitake, Y. 1974 Bubble size, interfacial area, and liquid-phase mass transfer coefficient in bubble columns. Ind. Engng Chem. Process Des. Dev. 13 (1), 8491.
Komura, S. & Kodama, H. 1997 Two-order-parameter model for an oil-water-surfactant system. Phys. Rev. E 55 (2), 17221727.
Korteweg, D. J. 1901 Sur la forme que prennent les equations du mouvements des fluides si l’on tient compte des forces capillaires causées par des variations de densité considérables mais continues et sur la théorie de la capillarité dans l’hypothèse d’une variation continue de la densité (in French). Arch. Néerlandaises Sci. Exactes et Naturelles 6, 124.
Kralova, I. & Sjöblom, J. 2009 Surfactants used in food industry: a review. J. Disper. Sci. Technol. 30 (9), 13631383.
Kwakkel, M., Breugem, W.-P. & Boersma, B. J. 2013 Extension of a CLSVOF method for droplet-laden flows with a coalescence/breakup model. J. Comput. Phys. 253, 166188.
Lai, M. C., Tseng, Y. H. & Huang, H. 2008 An immersed boundary method for interfacial flows with insoluble surfactant. J. Comput. Phys. 227 (15), 72797293.
Lai, M. C., Tseng, Y. H. & Huang, H. 2010 Numerical simulation of moving contact lines with surfactant by immersed boundary method. Commun. Comput. Phys. 8 (4), 735.
Langevin, D. 2014 Rheology of adsorbed surfactant monolayers at fluid surfaces. Annu. Rev. Fluid Mech. 46, 4765.
Laradji, M., Guo, H., Grant, M. & Zuckermann, M. J. 1992 The effect of surfactants on the dynamics of phase separation. J. Phys.: Condens. Matter 4, 67156728.
Lasheras, J. C., Eastwood, C., Martınez-Bazán, C. & Montanes, J. L. 2002 A review of statistical models for the break-up of an immiscible fluid immersed into a fully developed turbulent flow. Intl J. Multiphase Flow 28 (2), 247278.
Lee, T. W. & Robinson, D. 2011 Calculation of the drop size distribution and velocities from the integral form of the conservation equations. Combust. Sci. Technol. 183, 271284.
Li, Y., Choi, J. & Kim, J. 2016 A phase-field fluid modeling and computation with interfacial profile correction term. Commun. Nonlinear Sci. 30 (1-3), 84100.
Liao, Y. & Lucas, D. 2010 A literature review on mechanisms and models for the coalescence process of fluid particles. Chem. Engng Sci. 65, 28512864.
Liu, H., Ba, Y., Wu, L., Li, Z., Xi, G. & Zhang, Y. 2018 A hybrid lattice Boltzmann and finite difference method for droplet dynamics with insoluble surfactants. J. Fluid Mech. 837, 381412.
López-Díaz, D., García-Mateos, I. & Velázquez, M. M. 2006 Surface properties of mixed monolayers of sulfobetaines and ionic surfactants. J. Colloid Interface Sci. 299 (2), 858866.
Lovick, J., Mouza, A. A., Paras, S. V., Lye, G. J. & Angeli, P. 2005 Drop size distribution in highly concentrated liquid–liquid dispersions using a light back scattering method. J. Chem. Technol. Biotechnol. 80 (5), 545552.
Lu, J., Muradoglu, M. & Tryggvason, G. 2017 Effect of insoluble surfactant on turbulent bubbly flows in vertical channels. Intl J. Multiphase Flow 95, 135143.
Lu, J. & Tryggvason, G. 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20 (4), 040701.
Lu, J. & Tryggvason, G. 2018 Direct numerical simulations of multifluid flows in a vertical channel undergoing topology changes. Phys. Rev. Fluids 3, 084401.
Lu, J. & Tryggvason, G. 2019 Multifluid flows in a vertical channel undergoing topology changes: effect of void fraction. Phys. Rev. Fluids 4, 084301.
Luo, H. & Svendsen, H. F. 1996 Theoretical model for drop and bubble breakup in turbulent dispersions. AIChE J. 42 (5), 12251233.
Magaletti, F., Picano, F., Chinappi, M., Marino, L. & Casciola, C. M. 2013 The sharp-interface limit of the Cahn–Hilliard/Navier–Stokes model for binary fluids. J. Fluid Mech. 714, 95126.
Mugele, R. A. & Evans, H. D. 1951 Droplet size distribution in sprays. Ind. Engng Chem. Res. 43 (6), 13171324.
Muradoglu, M. & Tryggvason, G. 2014 Simulations of soluble surfactants in 3D multiphase flow. J. Comput. Phys. 274, 737757.
Notz, P. K. & Basaran, O. A. 2004 Dynamics and breakup of a contracting liquid filament. J. Fluid Mech. 512, 223256.
Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D. & Upstill-Goddard, R. C. 2018 Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological surfactants. Nat. Geosci. 11, 492496.
Perlekar, P., Biferale, L. & Sbragaglia, M. 2012 Droplet size distribution in homogeneous isotropic turbulence. Phys. Fluids 065101, 110.
Peyret, R. 2002 Spectral Methods for Incompressible Viscous Flow. Springer.
Piedfert, A., Lalanne, B., Masbernat, O. & Risso, F. 2018 Numerical simulations of a rising drop with shape oscillations in the presence of surfactants. Phys. Rev. Fluids 3, 103605.
Popinet, S. 2018 Numerical models of surface tension. Annu. Rev. Fluid Mech. 50, 128.
Porter, M. R. 1991 Handbook of Surfactants. Springer.
Rekvig, L. & Frenkel, D. 2007 Molecular simulations of droplet coalescence in oil/water/surfactant systems. J. Chem. Phys. 127 (13), 134701.
Renardy, Y., Renardy, M. & Cristini, V. 2002 A new volume-of-fluid formulation for surfactants and simulations of drop deformation under shear at a low viscosity ratio. Eur. J. Mech. (B/Fluid) 21 (1), 4959.
Roccon, A., De Paoli, M., Zonta, F. & Soldati, A. 2017 Viscosity-modulated breakup and coalescence of large drops in bounded turbulence. Phys. Rev. Fluids 2, 083603.
Roccon, A., Zonta, F. & Soldati, A. 2019 Turbulent drag reduction by compliant lubricating layer. J. Fluid Mech. 863, R1.
Rosen, M. J. & Kunjappu, J. T. 2012 Surfactants and Interfacial Phenomena. Wiley.
Rosti, M. E., De Vita, F. & Brandt, L. 2019a Numerical simulations of emulsions in shear flows. Acta Mech. 230, 667682.
Rosti, M. E., Ge, Z., Jain, S. S., Dodd, M. S. & Brandt, L. 2019b Droplets in homogeneous shear turbulence. J. Fluid Mech. 876, 962984.
Scarbolo, L., Bianco, F. & Soldati, A. 2015 Coalescence and breakup of large droplets in turbulent channel flow. Phys. Fluids 27 (7), 073302.
Scarbolo, L., Bianco, F. & Soldati, A. 2016 Turbulence modification by dispersion of large deformable droplets. Eur. J. Mech. (B/Fluid) 55, 294299.
Scarbolo, L., Molin, D., Perlekar, P., Sbragaglia, M., Soldati, A. & Toschi, F. 2013 Unified framework for a side-by-side comparison of different multicomponent algorithms: Lattice Boltzmann versus phase field model. J. Comput. Phys. 234, 263279.
Scardovelli, R. & Zaleski, S. 1999 Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31 (1), 567603.
Sethian, J. A. 1999 Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science, vol. 3. Cambridge University Press.
Shan, X. & Chen, H. 1993 Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47 (3), 1815.
Skartlien, R., Sollum, E. & Schumann, H. 2013 Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations. J. Chem. Phys. 139 (17), 174901.
Soldati, A. & Banerjee, S. 1998 Turbulence modification by large-scale organized electrohydrodynamic flows. Phys. Fluids 10 (7), 17421756.
Soligo, G., Roccon, A. & Soldati, A. 2019a Coalescence of surfactant-laden drops by phase field method. J. Comput. Phys. 376, 12921311.
Soligo, G., Roccon, A. & Soldati, A. 2019b Mass conservation improved phase field methods for turbulent multiphase flow simulation. Acta Mech. 230, 683696.
Speziale, C. G. 1987 On the advantages of the vorticity–velocity formulation of the equations of fluid dynamics. J. Comput. Phys. 73 (2), 476480.
Sreehari, P., Borg, M. K., Chubynsky, M. V., Sprittles, J. E. & Reese, J. M. 2019 Droplet coalescence is initiated by thermal motion. Phys. Rev. Lett. 122 (10), 104501.
Stone, H. A. & Leal, L. G. 1990 The effects of surfactants on drop deformation and breakup. J. Fluid Mech. 220, 161186.
Sun, Y. & Beckermann, C. 2007 Sharp interface tracking using the phase-field equation. J. Comput. Phys. 220 (2), 626653.
Takagi, S. & Matsumoto, Y. 2011 Surfactant effects on bubble motion and bubbly flows. Annu. Rev. Fluid Mech. 43, 615636.
Than, P., Preziosi, L., Joseph, D. D. & Arney, M. 1988 Measurement of interfacial tension between immiscible liquids with the spinning rod tensiometer. J. Colloid Interface Sci. 124 (2), 552559.
Tryggvason, G., Bunner, B., Esmaeeli, A., Juric, D., Tauber, W., Han, J., Nas, S. & Jan, Y. 2001 A front-tracking method for the computations of multiphase flow. J. Comput. Phys. 759, 708759.
Tryggvason, G., Scardovelli, R. & Zaleski, S. 2011 Direct Numerical Simulations of Gas–Liquid Multiphase Flows. Cambridge University Press.
Tsouris, C. & Tavlarides, L. L. 1994 Breakage and coalescence models for drops in turbulent dispersions. AIChE J. 40 (3), 395406.
Valentas, K. J. & Amundson, N. R. 1966 Breakage and coalescence in dispersed phase systems. Ind. Engng Chem. Fundam. 5 (4), 533542.
van der Waals, J. D. 1979 The thermodynamic theory of capillarity under the hypothesis of a continuous variation of density. J. Stat. Phys. 20, 200244.
Weinheimer, R. M., Fennell, D. E. & Cussler, E. L. 1981 Diffusion in surfactant solutions. J. Colloid Interface Sci. 80 (2), 357368.
Xu, J. J., Li, Z., Lowengrub, J. & Zhao, H. 2011 Numerical study of surfactant-laden drop–drop interactions. Commun. Comput. Phys. 10 (2), 453473.
Xu, J. J. & Zhao, H. K. 2003 An Eulerian formulation for solving partial differential equations along a moving interface. SIAM J. Sci. Comput. 19 (1), 573594.
Xu, J. J., Zhilin, L., Lowengrub, J. & Zhao, H. 2006 A level-set method for interfacial flows with surfactant. J. Comput. Phys. 212, 590616.
Yue, P., Feng, J. J., Liu, C. & Shen, J. 2004 A diffuse-interface method for simulating two-phase flows of complex fluids. J. Fluid Mech. 515 (1), 293317.
Yue, P., Zhou, C. & Feng, J. J. 2007 Spontaneous shrinkage of drops and mass conservation in phase-field simulations. J. Comput. Phys. 223 (1), 19.
Yue, P., Zhou, C. & Feng, J. J. 2010 Sharp-interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645 (8), 279.
Yun, A., Li, Y. & Kim, J. 2014 A new phase-field model for a water-oil-surfactant system. Appl. Math. Comput. 229, 422432.
Zhang, Y. & Ye, W. 2017 A flux-corrected phase-field method for surface diffusion. Commun. Comput. Phys. 22 (2), 422440.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Breakage, coalescence and size distribution of surfactant-laden droplets in turbulent flow

  • Giovanni Soligo (a1) (a2), Alessio Roccon (a1) (a2) and Alfredo Soldati (a1) (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.