Skip to main content Accessibility help
×
Home

Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number

  • Giovanni Fantuzzi (a1), Anton Pershin (a2) and Andrew Wynn (a1)

Abstract

The vertical heat transfer in Bénard–Marangoni convection of a fluid layer with infinite Prandtl number is studied by means of upper bounds on the Nusselt number $Nu$ as a function of the Marangoni number $Ma$ . Using the background method for the temperature field, it has recently been proved by Hagstrom & Doering (Phys. Rev. E, vol. 81, 2010, art. 047301) that $Nu\leqslant 0.838Ma^{2/7}$ . In this work we extend previous background method analysis to include balance parameters and derive a variational principle for the bound on $Nu$ , expressed in terms of a scaled background field, that yields a better bound than Hagstrom & Doering’s formulation at a given $Ma$ . Using a piecewise-linear, monotonically decreasing profile we then show that $Nu\leqslant 0.803Ma^{2/7}$ , lowering the previous prefactor by 4.2 %. However, we also demonstrate that optimisation of the balance parameters does not affect the asymptotic scaling of the optimal bound achievable with Hagstrom & Doering’s original formulation. We subsequently utilise convex optimisation to optimise the bound on $Nu$ over all admissible background fields, as well as over two smaller families of profiles constrained by monotonicity and convexity. The results show that $Nu\leqslant O(Ma^{2/7}(\ln Ma)^{-1/2})$ when the background field has a non-monotonic boundary layer near the surface, while a power-law bound with exponent $2/7$ is optimal within the class of monotonic background fields. Further analysis of our upper-bounding principle reveals the role of non-monotonicity, and how it may be exploited in a rigorous mathematical argument.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Email address for correspondence: gf910@ic.ac.uk

References

Hide All
Boeck, T. 2005 Bénard–Marangoni convection at large Marangoni numbers: results of numerical simulations. Adv. Space Res. 36 (1), 410.
Boeck, T. & Thess, A. 1998 Turbulent Bénard–Marangoni convection: results of two-dimensional simulations. Phys. Rev. Lett. 80 (6), 12161219.
Boeck, T. & Thess, A. 2001 Power-law scaling in Bénard–Marangoni convection at large Prandtl numbers. Phys. Rev. E 64 (2), 027303.
Boyd, S., El Ghaoui, L., Feron, E. & Balakrishnan, V. 1994 Linear Matrix Inequalities in System and Control Theory. SIAM.
Boyd, S. & Vandenberghe, L. 2004 Convex Optimization. Cambridge University Press.
de Bruyn, J. R., Bodenschatz, E., Morris, S. W., Trainoff, S. P., Hu, Y., Cannell, D. S. & Ahlers, G. 1996 Apparatus for the study of Rayleigh–Bénard convection in gases under pressure. Rev. Sci. Instrum. 67 (6), 20432067.
Busse, F. H. 1979 The optimum theory of turbulence. Adv. Appl. Mech. 18, 77121.
Chernyshenko, S. I.2017 Relationship between the methods of bounding time averages. arXiv:1704.02475v2.
Chernyshenko, S. I., Goulart, P. J., Huang, D. & Papachristodoulou, A. 2014 Polynomial sum of squares in fluid dynamics: a review with a look ahead. Phil. Trans. R. Soc. Lond. A 372 (2020), 20130350.
Constantin, P. & Doering, C. R. 1995a Variational bounds in dissipative systems. Phys. D 82 (3), 221228.
Constantin, P. & Doering, C. R. 1995b Variational bounds on energy dissipation in incompressible flows. Part II. Channel flow. Phys. Rev. E 51 (4), 31923198.
DebRoy, T. & David, S. A. 1995 Physical processes in fusion welding. Rev. Mod. Phys. 67 (1), 85112.
Doering, C. R. & Constantin, P. 1992 Energy dissipation in shear driven turbulence. Phys. Rev. Lett. 69 (11), 16481651.
Doering, C. R. & Constantin, P. 1994 Variational bounds on energy dissipation in incompressible flows: shear flow. Phys. Rev. E 49 (5), 40874099.
Doering, C. R. & Constantin, P. 1996 Variational bounds on energy dissipation in incompressible flows. Part III. Convection. Phys. Rev. E 53 (6), 59575981.
Doering, C. R., Otto, F. & Reznikoff, M. G. 2006 Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh–Bénard convection. J. Fluid Mech. 560, 229241.
Eckert, K. & Thess, A. 2006 Secondary instabilities in surface-tension-driven Bénard–Marangoni convection. In Dynamics of Spatio-temporal Cellular Structures (ed. Mutabazi, I., Wesfreid, J. E. & Guyon, E.), Springer Tracts in Modern Physics, vol. 207, chap. 9, pp. 163176. Springer.
Fantuzzi, G., Goluskin, D., Huang, D. & Chernyshenko, S. I. 2016 Bounds for deterministic and stochastic dynamical systems using sum-of-squares optimization. SIAM J. Appl. Dyn. Syst. 15 (4), 19621988.
Fantuzzi, G. & Wynn, A. 2015 Construction of an optimal background profile for the Kuramoto–Sivashinsky equation using semidefinite programming. Phys. Lett. A 379 (1–2), 2332.
Fantuzzi, G. & Wynn, A. 2016a Optimal bounds with semidefinite programming: an application to stress-driven shear flows. Phys. Rev. E 93 (4), 043308.
Fantuzzi, G. & Wynn, A. 2016b Semidefinite relaxation of a class of quadratic integral inequalities. In Proc. 55th IEEE Annu. Conf. Decis. Control, Las Vegas, USA, pp. 61926197. IEEE.
Fantuzzi, G. & Wynn, A. 2017 Exact energy stability of Bénard–Marangoni convection at infinite Prandtl number. J. Fluid Mech. 822, R1.
Fantuzzi, G., Wynn, A., Goulart, P. J. & Papachristodoulou, A. 2017 Optimization with affine homogeneous quadratic integral inequality constraints. IEEE Trans. Autom. Control 62 (12), 62216236.
Fujisawa, K., Kim, S., Kojima, M., Okamoto, Y. & Yamashita, M.2009 User’s manual for SparseCoLO: conversion methods for SPARSE COnic-form Linear Optimization problems. Tech. Rep. B-453. Department of Mathematical and Computing Sciences, Tokyo Institute of Technology, Tokyo, Japan.
Fukuda, M., Kojima, M., Murota, K. & Nakata, K. 2000 Exploiting sparsity in semidefinite programming via matrix completion. Part I. General framework. SIAM J. Optim. 11 (3), 647674.
Goluskin, D.2017 Bounding averages rigorously using semidefinite programming: mean moments of the Lorenz system. Nonlinear Sci. doi:10.1007/s00332-017-9421-2.
Goluskin, D. & Doering, C. R. 2016 Bounds for convection between rough boundaries. J. Fluid Mech. 804, 370386.
Hagstrom, G. & Doering, C. R. 2010 Bounds on heat transport in Bénard–Marangoni convection. Phys. Rev. E 81 (4), 047301.
Hassanzadeh, P., Chini, G. P. & Doering, C. R. 2014 Wall to wall optimal transport. J. Fluid Mech. 751, 627662.
Kim, S., Kojima, M., Mevissen, M. & Yamashita, M. 2011 Exploiting sparsity in linear and nonlinear matrix inequalities via positive semidefinite matrix completion. Math. Program. B 129 (1), 3368.
Kumar, A. & Roy, S. 2009 Effect of three-dimensional melt pool convection on process characteristics during laser cladding. Comput. Mater. Sci. 46 (2), 495506.
Lappa, M. 2010 Thermal Convection: Patterns, Evolution and Stability. Wiley.
Löfberg, J. 2004 YALMIP: A toolbox for modeling and optimization in MATLAB. In IEEE Int. Symp. Comput. Aided Control Syst. Des., Taipei, TW, pp. 284289.
Madani, R., Kalbat, A. & Lavaei, J. 2015 ADMM for sparse semidefinite programming with applications to optimal power flow problem. In Proc. 54th IEEE Conf. Decis. Control, pp. 59325939. IEEE.
Nakata, K., Fujisawa, K., Fukuda, M., Kojima, M. & Murota, K. 2003 Exploiting sparsity in semidefinite programming via matrix completion. Part II. Implementation and numerical results. Math. Program. B 95 (2), 303327.
Nicodemus, R., Grossmann, S. & Holthaus, M. 1997 Improved variational principle for bounds on energy dissipation in turbulent shear flow. Phys. D 101 (1–2), 178190.
O’Donoghue, B., Chu, E., Parikh, N. & Boyd, S. 2016 Conic optimization via operator splitting and homogeneous self-dual embedding. J. Optim. Theor. Applics 169 (3), 10421068.
Otero, J.2002 Bounds for the heat transport in turbulent convection. PhD thesis, University of Michigan.
Otto, F. & Seis, C. 2011 Rayleigh–Bénard convection: improved bounds on the Nusselt number. J. Math. Phys. 52 (8), 083702.
Pakazad, S. K., Hansson, A., Andersen, M. S. & Rantzer, A. 2017 Distributed semidefinite programming with application to large-scale system analysis. IEEE Trans. Automat. Contr. doi:10.1109/TAC.2017.2739644.
Patberg, W. B., Koers, A., Steenge, W. D. E. & Drinkenburg, A. A. H. 1983 Effectiveness of mass transfer in a packed distillation column in relation to surface tension gradients. Chem. Engng Sci. 38 (6), 917923.
Pearson, J. R. A. 1958 On convection cells induced by surface tension. J. Fluid Mech. 4 (5), 489500.
Plasting, S. C.2004 Turbulence has its limits: a priori estimates of transport properties in turbulent fluid flows. PhD thesis, University of Bristol.
Plasting, S. C. & Ierley, G. R. 2005 Infinite-Prandtl-number convection. Part 1. Conservative bounds. J. Fluid Mech. 542 (2005), 343363.
Plasting, S. C. & Kerswell, R. R. 2003 Improved upper bound on the energy dissipation rate in plane Couette flow: the full solution to Busse’s problem and the Constantin–Doering–Hopf problem with one-dimensional background field. J. Fluid Mech. 477, 363379.
Pumir, A. & Blumenfeld, L. 1996 Heat transport in a liquid layer locally heated on its free surface. Phys. Rev. E 54 (5), R4528R4531.
Schatz, M. F. & Neitzel, G. P. 2001 Experiments on thermocapillary instabilities. Annu. Rev. Fluid Mech. 33, 93127.
Sun, Y., Andersen, M. S. & Vandenberghe, L. 2014 Decomposition in conic optimization with partially separable structure. SIAM J. Optim. 24 (2), 873897.
Tobasco, I. & Doering, C. R. 2017 Optimal wall-to-wall transport by incompressible flows. Phys. Rev. Lett. 118 (26), 264502.
Toh, K. C., Todd, M. J. & Tütüncü, R. H. 1999 SDPT3: a MATLAB software package for semidefinite programming, version 1.3. Optim. Methods Softw. 11 (1–4), 545581.
Tütüncü, R. H., Toh, K. C. & Todd, M. J. 2003 Solving semidefinite-quadratic-linear programs using SDPT3. Math. Program. Ser. B 95 (2), 189217.
Vandenberghe, L. & Boyd, S. 1996 Semidefinite programming. SIAM Rev. 38 (1), 4995.
Wen, B., Chini, G. P., Dianati, N. & Doering, C. R. 2013 Computational approaches to aspect-ratio-dependent upper bounds and heat flux in porous medium convection. Phys. Lett. A 377 (41), 29312938.
Wen, B., Chini, G. P., Kerswell, R. R. & Doering, C. R. 2015 Time-stepping approach for solving upper-bound problems: application to two-dimensional Rayleigh–Bénard convection. Phys. Rev. E 92 (4), 043012.
Whitehead, J. P. & Doering, C. R. 2011 Ultimate state of two-dimensional Rayleigh–Bénard convection between free-slip fixed-temperature boundaries. Phys. Rev. Lett. 106 (24), 244501.
Whitehead, J. P. & Doering, C. R. 2012 Rigid bounds on heat transport by a fluid between slippery boundaries. J. Fluid Mech. 707, 241259.
Wittenberg, R. W. & Gao, J. 2010 Conservative bounds on Rayleigh–Bénard convection with mixed thermal boundary conditions. Eur. Phys. J. B 76 (4), 565580.
Yiantsios, S. G., Serpetsi, S. K., Doumenc, F. & Guerrier, B. 2015 Surface deformation and film corrugation during drying of polymer solutions induced by Marangoni phenomena. Intl J. Heat Mass Transfer 89, 10831094.
Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P. J. & Wynn, A. 2017a Fast ADMM for homogeneous self-dual embedding of sparse SDPs. IFAC-PapersOnLine 50 (1), 87118716.
Zheng, Y., Fantuzzi, G., Papachristodoulou, A., Goulart, P. J. & Wynn, A. 2017b Fast ADMM for semidefinite programs with chordal sparsity. In Proc. 2017 Am. Control Conf., Seattle, USA, pp. 33353340. IEEE.
Zuiderweg, F. J. & Harmens, A. 1958 The influence of surface phenomena on the performance of distillation columns. Chem. Engng Sci. 9 (2–3), 89103.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Bounds on heat transfer for Bénard–Marangoni convection at infinite Prandtl number

  • Giovanni Fantuzzi (a1), Anton Pershin (a2) and Andrew Wynn (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.