Skip to main content Accessibility help

The behaviour of Tollmien–Schlichting waves undergoing small-scale localised distortions

  • Hui Xu (a1) (a2), Spencer J. Sherwin (a1), Philip Hall (a2) and Xuesong Wu (a2)


This paper is concerned with the behaviour of Tollmien–Schlichting (TS) waves experiencing small localised distortions within an incompressible boundary layer developing over a flat plate. In particular, the distortion is produced by an isolated roughness element located at $\mathit{Re}_{x_{c}}=440\,000$ . We considered the amplification of an incoming TS wave governed by the two-dimensional linearised Navier–Stokes equations, where the base flow is obtained from the two-dimensional nonlinear Navier–Stokes equations. We compare these solutions with asymptotic analyses which assume a linearised triple-deck theory for the base flow and determine the validity of this theory in terms of the height of the small-scale humps/indentations taken into account. The height of the humps/indentations is denoted by $h$ , which is considered to be less than or equal to $x_{c}\mathit{Re}_{x_{c}}^{-5/8}$ (corresponding to $h/{\it\delta}_{99}<6\,\%$ for our choice of $\mathit{Re}_{x_{c}}$ ). The rescaled width $\hat{d}~(\equiv d/(x_{c}\mathit{Re}_{x_{c}}^{-3/8}))$ of the distortion is of order $\mathit{O}(1)$ and the width $d$ is shorter than the TS wavelength ( ${\it\lambda}_{TS}=11.3{\it\delta}_{99}$ ). We observe that, for distortions which are smaller than 0.1 of the inner deck height ( $h/{\it\delta}_{99}<0.4\,\%$ ), the numerical simulations confirm the asymptotic theory in the vicinity of the distortion. For larger distortions which are still within the inner deck ( $0.4\,\%<h/{\it\delta}_{99}<5.5\,\%$ ) and where the flow is still attached, the numerical solutions show that both humps and indentations are destabilising and deviate from the linear theory even in the vicinity of the distortion. We numerically determine the transmission coefficient which provides the relative amplification of the TS wave over the distortion as compared to the flat plate. We observe that for small distortions, $h/{\it\delta}_{99}<5.5\,\%$ , where the width of the distortion is of the order of the boundary layer, a maximum amplification of only 2 % is achieved. This amplification can however be increased as the width of the distortion is increased or if multiple distortions are present. Increasing the height of the distortion so that the flow separates ( $7.2\,\%<h/{\it\delta}_{99}<12.8\,\%$ ) leads to a substantial increase in the transmission coefficient of the hump up to 350 %.


Corresponding author

Email address for correspondence:


Hide All
Abramowitz, M. & Stegun, I. A. 1964 Handbook of Mathematical Functions. National Bureau of Standards.
Choudhari, M. & Streett, C. L.1994 Theoretical prediction of boundary-layer receptivity. AIAA Paper 94-2223.
Corke, T. C., Sever, A. B. & Morkovin, M. V. 1986 Experiments on transition enhancements by distributed roughness. Phys. Fluids 29, 31993213.
Crouch, J. D.1994 Theoretical studies on the receptivity of boundary layers. AIAA Paper 94-2224.
Dietz, A. J. 1999 Local boundary-layer receptivity to a convected free-stream disturbance. J. Fluid Mech. 378, 291317.
Drazin, P. G. & Reid, W. H. 1981 Hydrodynamic Stability. Cambridge University Press.
Duck, P. W., Ruban, A. I. & Zhikharev, C. N. 1996 Generation of Tollmien–Schlichting waves by free-stream turbulence. J. Fluid Mech. 312, 341371.
Fischer, P. & Choudhari, M.2004 Numerical simulation of roughness-induced transient growth in a laminar boundary layer. AIAA Paper 2004-2539.
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96, 064501.
Gaster, M. 1965 On the generation of spatially growing waves in a boundary layer. J. Fluid Mech. 22, 433441.
Gaster, M. 1974 On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66 (3), 465480.
Goldstein, M. E. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. J. Fluid Mech. 127, 5981.
Goldstein, M. E. 1985 Scattering of acoustic waves into Tollmien–Schlichting waves by small streamwise variations in surface geometry. J. Fluid Mech. 154, 509529.
Goldstein, M. E. & Hultgren, L. S. 1989 Boundary-layer receptivity to long-wave free-stream disturbances. Annu. Rev. Fluid Mech. 21, 137166.
Goldstein, M. E., Sockol, P. M. & Sanz, J. 1983 The evolution of Tollmien–Schlichting waves near a leading edge. Part 2. Numerical determination of amplitudes. J. Fluid Mech. 129, 443453.
Hall, P. & Smith, F. T. 1984 On the effects of nonparallelism, three-dimensionality, and mode interaction in nonlinear boundary-layer stability. Stud. Appl. Maths 70, 91120.
Heinrich, R. A., Choudhari, M. & Kerschen, E. J.1988 A comparison of boundary-layer receptivity mechanisms. AIAA Paper 88-3758.
Israeli, M. & Orszag, S. A. 1981 Approximation of radiation boundary conditions. J. Comput. Phys. 41, 115135.
Kachanov, Y. S. 1994 Physical mechanisms of laminar-boundary-layer transition. Annu. Rev. Fluid Mech. 26, 4110482.
Kachanov, Y. S. 2000 Three-dimensional receptivity of boundary layers. J. Mech. (B/Fluids) 19, 723744.
Karniadaks, G. E. & Sherwin, S. J. 2005 Spectral/HP Element for Computational Fluid Dynamics. Springer.
Kerschen, E. J.1989 Boundary layer receptivity. AIAA Paper 89-1109.
Kerschen, E. J. 1990 Boundary layer receptivity theory. Appl. Mech. Rev. 43, S152S157.
Kozlov, V. V. & Ryzhov, O. S. 1990 Receptivity of boundary layers: asymptotic theory and experiment. Proc. R. Soc. Lond. A 429, 341373.
Lin, C. C. 1966 The Theory of Hydrodynamic Stability. Cambridge University Press.
Messiter, A. F. 1970 Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Math. 18, 241257.
Morkovin, M. V. 1969 The many faces of transition. In Viscous Drag Reduction (ed. Wells, C. S.), pp. 131. Plenum.
Moston, J., Stewart, P. A. & Cowley, S. J. 2000 On the nonlinear growth of two-dimensional Tollmien–Schlichting waves in a flat-plate boundary layer. J. Fluid Mech. 425, 259300.
Murdock, J. W. 1980 The generation of a Tollmien–Schlichting wave by a sound wave. Proc. R. Soc. Lond. A 372, 517534.
Napolitano, N., Davis, R. T. & Werle, M. J. 1979 A numerical technique for the triple-deck problem. AIAA 17 (7), 78–1133.
Neiland, V. Ya. 1969 Theory of laminar boundary layer separation in supersonic flow. Mekh. Zhid. Gaz. 4, 5357.
Nishioka, M. & Morkovin, M. V. 1986 Boundary-layer receptivity to unsteady pressure gradients: experiments and overview. J. Fluid Mech. 171, 219261.
Ruban, A. I. 1984 On Tollmien–Schlichting wave generation by sound. Izv. Akad. Nauk SSSR Mekh. Zhidk. Gaza 5, 4452.
Ruban, A. I. 1985 On Tollmien–Schlichting wave generation by sound. In Laminar–Turbulent Transition (ed. Kozlov, V. V.), pp. 313320. Springer.
Saric, W. S., Reed, H. L. & Kerschen, E. J. 2002 Boundary-layer receptivity to free-stream disturbances. Annu. Rev. Fluid Mech. 34, 251276.
Savin, D. J., Smith, F. T. & Allen, T. 1999 Transition of free disturbances in inflectional flow over an isolated surface roughness. Proc. R. Soc. Lond. A 455, 491541.
Schlichting, H. 1968 Boundary-Layer Theory. McGraw-Hill.
Schubauer, G. B. & Skramstad, H. K. 1948 Laminar-boundary-layer oscillations and transition on a flat plat. NASA TR-909.
Smith, F. T. 1973 Laminar flow over a small hump on a flat plate. J. Fluid Mech. 57, 803824.
Smith, F. T. 1979a Nonlinear stability of boundary layers for disturbances of various sizes. Proc. R. Soc. Lond. A 368, 573589.
Smith, F. T. 1979b On the non-parallel flow stability of the Blasius boundary layer. Proc. R. Soc. Lond. A 366, 91109.
Smith, F. T. 1981 On boundary-layer flow past two-dimensional obstacles. J. Fluid Mech. 113, 123152.
Smith, F. T. & Burggraf, O. R. 1985 On the development of large-sized short-scaled disturbances in boundary layers. Proc. R. Soc. Lond. A 399, 2555.
Smith, F. T. & Merkin, J. H. 1982 Triple-deck solutions for subsonic flow past humps, steps, concave or convex corners and wedged trailing edges. Comput. Fluids 10 (1), 725.
Stewartson, K. & Williams, P. G. 1969 Self-induced separation. Proc R. Soc. Lond. A 312 (312), 181206.
Stuart, J. T. 1963 Hydrodynamic stability. In Laminar Boundary Layer (ed. Rosenhead, L.), pp. 492579. Oxford University Press.
Sykes, R. I. 1978 Stratification effects in boundary-layer flow over hills. Proc. R. Soc. Lond. A 361 (1705), 225243.
White, E. B. 2002 Transient growth of stationary disturbances in a flat plate boundary layer. Phys. Fluids 14 (12), 44294439.
White, E. B. & Ergin, F. G. 2003 Receptivity and transient growth of roughness-induced disturbances. In 33rd AIAA Fluid Dynamics Conference and Exhibit, Orlando, FL. AIAA 2003-4243.
Wlezien, R. W.1994 Measurement of acoustic receptivity. AIAA Paper 94-2221.
Wörner, A., Rist, U. & Wagner, S. 2003 Humps/steps influence on stability characteristics of two-dimensional laminar boundary layer. AIAA 41 (2), 192197.
Wu, X. S. 2001 Receptivity of boundary layers with distributed roughness to vortical and acoustic disturbances: a second-order asymptotic theory and comparison with experiments. J. Fluid Mech. 431, 91133.
Wu, X. S. & Hogg, L. W. 2006 Acoustic radiation of Tollmien–Schlichting waves as they undergo rapid distortion. J. Fluid Mech. 550, 307347.
Zavol’skii, N. A., Reutov, V. P. & Ryboushkina, G. V. 1983 Excitation of Tollmien–Schlichting waves by acoustic and vortex disturbance scattering in boundary layer on a wavy surface. J. Appl. Mech. Tech. Phys. 24 (3), 355361.
Zhuk, V. I. & Ryzhov, O. S. 1982 On locally inviscid perturbations in a boundary layer with self-induced pressure. Dokl. Akad. Nauk SSSR 263 (1), 5659.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

The behaviour of Tollmien–Schlichting waves undergoing small-scale localised distortions

  • Hui Xu (a1) (a2), Spencer J. Sherwin (a1), Philip Hall (a2) and Xuesong Wu (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed