Skip to main content Accessibility help

Barotropic theory for the velocity profile of Jupiter’s turbulent jets: an example for an exact turbulent closure

  • E. Woillez (a1) and F. Bouchet (a1)


We model the dynamics of Jupiter’s jets by the stochastic barotropic $\unicode[STIX]{x1D6FD}$ -plane model. In this simple framework, by analytic computation of the averaged effect of eddies, we obtain three new explicit results about the equilibrium structure of jets. First we obtain a very simple explicit relation between the Reynolds stresses, the energy injection rate and the averaged velocity shear. This predicts the averaged velocity profile far from the jet edges (extrema of zonal velocity). Our approach takes advantage of a time-scale separation between the inertial dynamics on one hand, and the spin-up (or spin-down) time on the other. Second, a specific asymptotic expansion close to the eastward jet extremum explains the formation of a cusp at the scale of energy injection, characterized by a curvature that is independent of the forcing spectrum. Finally, we derive equations that describe the evolution of the westward tip of the jets. The analysis of these equations is consistent with the previously discussed picture of barotropic adjustment, explaining the relation between the westward jet curvature and the $\unicode[STIX]{x1D6FD}$ -effect. Our results give a consistent overall theory of the stationary velocity profile of inertial barotropic zonal jets, in the limit of small-scale forcing.


Corresponding author

Email address for correspondence:


Hide All
Bakas, N. & Ioannou, P. 2014 A theory for the emergence of coherent structures in beta-plane turbulence. J. Fluid Mech. 740, 312340.
Bouchet, F. & Morita, H. 2010 Large time behavior and asymptotic stability of the 2D Euler and linearized Euler equations. Physica D 239, 948966.
Bouchet, F., Nardini, C. & Tangarife, T. 2013 Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier–Stokes equations. J. Stat. Phys. 153 (4), 572625.
Bouchet, F., Nardini, C. & Tangarife, T. 2016 Kinetic theory and quasilinear theories of jet dynamics. In Zonal Flows (ed. Galperin, B.), Cambridge University Press.
Bouchet, F. & Simonnet, E. 2009 Random changes of flow topology in two-dimensional and geophysical turbulence. Phys. Rev. Lett. 102 (9), 094504.
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515, 227295.
Brunet, G. 1990 Dynamique des Ondes de Rossby dans un Jet Parabolique. Université McGill.
Constantinou, N. C.2015 Formation of large-scale structures by turbulence in rotating planets. Preprint, arXiv:1503.07644.
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71 (5), 18181842.
Drazin, P. G., Beaumont, D. N. & Coaker, S. A. 1982 On Rossby waves modified by basic shear, and barotropic instability. J. Fluid Mech. 124, 439456.
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.
Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.
Frishman, A., Laurie, J. & Falkovich, G. 2017 Jets or vortices? What flows are generated by an inverse turbulent cascade? Phys. Rev. Fluids 2 (3), 032602.
Galperin, B., Sukoriansky, S. & Huang, H.-P. 2001 Universal n -5 spectrum of zonal flows on giant planets. Phys. Fluids 13 (6), 15451548.
Galperin, B., Young, R. M., Sukoriansky, S., Dikovskaya, N., Read, P. L., Lancaster, A. J. & Armstrong, D. 2014 Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 229, 295320.
Garcí, E. & Sánchez-Lavega, A. 2001 A study of the stability of jovian zonal winds from HST images: 1995–2000. Icarus 152 (2), 316330.
Ingersoll, A. P. 1990 Atmospheric dynamics of the outer planets. Science 248 (4953), 308315.
Ingersoll, A. P., Beebe, R. F., Mitchell, J. L., Garneau, G. W., Yagi, G. M. & Müller, J.-P. 1981 Interaction of eddies and mean zonal flow on Jupiter as inferred from Voyager 1 and 2 images. J. Geophys. Res. A 86 (A10), 87338743.
Kolokolov, I. V. & Lebedev, V. V. 2016a Structure of coherent vortices generated by the inverse cascade of two-dimensional turbulence in a finite box. Phys. Rev. E 93 (3), 033104.
Kolokolov, I. V. & Lebedev, V. V. 2016b Velocity statistics inside coherent vortices generated by the inverse cascade of 2-D turbulence. J. Fluid Mech. 809, R2.
Laurie, J., Boffetta, G., Falkovich, G., Kolokolov, I. & Lebedev, V. 2014 Universal profile of the vortex condensate in two-dimensional turbulence. Phys. Rev. Lett. 113 (25), 254503.
Li, L., Ingersoll, A. P. & Huang, X. 2006 Interaction of moist convection with zonal jets on Jupiter and Saturn. Icarus 180 (1), 113123.
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 19551966.
Pedlosky, J. 1964 The stability of currents in the atmosphere and the ocean: Part II. J. Atmos. Sci. 21 (4), 342353.
Pedlosky, J. 1982 Geophysical Fluid Dynamics. Springer.
Porco, C. C., West, R. A., McEwen, A., Del Genio, A. D., Ingersoll, A. P., Thomas, P., Squyres, S., Dones, L., Murray, C. D., Johnson, T. V. et al. 2003 Cassini imaging of Jupiter’s atmosphere, satellites, and rings. Science 299 (5612), 15411547.
Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Miki-Yamazaki, K., Sommeria, J., Didelle, H. & Fincham, A. 2004 Jupiter’s and Saturn’s convectively driven banded jets in the laboratory. Geophys. Res. Lett. 31 (22), L22701.
Reed, M. & Simon, B. 1978 Modern methods of mathematical physics. In Analysis of Operators. Academic Press.
Salyk, C., Ingersoll, A. P., Lorre, J., Vasavada, A. & Del Genio, A. D. 2006 Interaction between eddies and mean flow in Jupiter’s atmosphere: analysis of Cassini imaging data. Icarus 185 (2), 430442.
Sánchez-Lavega, A., Orton, G. S., Hueso, R., García-Melendo, E., Pérez-Hoyos, S., Simon-Miller, A., Rojas, J. F., Gómez, J. M., Yanamandra-Fisher, P., Fletcher, L. et al. 2008 Depth of a strong jovian jet from a planetary-scale disturbance driven by storms. Nature 451 (7177), 437440.
Schneider, T. & Liu, J. 2009 Formation of jets and equatorial superrotation on Jupiter. J. Atmos. Sci. 66, 579601.
Sommeria, J. 1986 Experimental study of the two-dimensional inverse energy cascade in a square box. J. Fluid Mech. 170, 139168.
Srinivasan, K. & Young, W. R. 2014 Reynolds stress and eddy diffusivity of 𝛽-plane shear flows. J. Atmos. Sci. 71 (6), 21692185.
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23 (7), 13461362.
Vasavada, A. R. & Showman, A. P. 2005 Jovian atmospheric dynamics: an update after Galileo and Cassini. Rep. Progr. Phys. 68 (8), 1935.
Williams, G. P. 1978 Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35 (8), 13991426.
Woillez, E. & Bouchet, F. 2017 Theoretical prediction of Reynolds stresses and velocity profiles for barotropic turbulent jets. Europhys. Lett. 118 (5), 54002.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Barotropic theory for the velocity profile of Jupiter’s turbulent jets: an example for an exact turbulent closure

  • E. Woillez (a1) and F. Bouchet (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed