Skip to main content Accessibility help

Baroclinic instability of Kirchhoff's elliptic vortex

  • Takeshi Miyazaki (a1) and Hideshi Hanazaki (a2)


The linear instability of Kirchhoff's elliptic vortex in a vertically stratified rotating fluid is investigated using the quasi-geostrophic, f-plane approximation. Any elliptic vortex is shown to be unstable to baroclinic disturbances of azimuthal wavenumber m = 1 (bending mode) and m = 2 (elliptical deformation). The axial wavenumber of the unstable bending mode approaches Λc = 1.7046 in the limit of small ellipticity, indicating that it is a short-wave baroclinic instability. The instability occurs when the bending wave rotates around the vortex axis with angular velocity identical to the rotation rate of the undisturbed elliptic vortex. On the other hand, the wavenumber of the elliptical deformation mode approaches zero in the same limit, showing that it is a long-wave sideband instability.



Hide All
Abramowitz, M. & Stegun, I. A. 1972 Handbook of Mathematical Functions. Natl Bur. Stand./Dover.
Benjamin, T. B. & Feir, J. E. 1967 The disintegration of wave trains on deep water. J. Fluid Mech. 27, 417430.
Blanch, G. 1966 Numerical aspects of Mathieu eigenvalues. Rend. Circ. Mat. Palermo (2) 15, 5197.
Carton, X. J. & McWilliams, J. C. 1989 Barotropic and baroclinic instabilities of axisymmetric vortices in a quasi-geostrophic model. In Mesoscale/ Synoptic Coherent Structures in Geophysical Turbulence (ed. J. C. J. Nihoul & B. M. Jamart), pp. 225244. Elsevier.
Clemm, D. S. 1969 Algorithm 352: Characteristic values and associated solutions of Mathieu's differential equation. Commun. Assoc. Computing Machinery 12, 399407.
Craik, A. D. D. 1985 Wave Interactions and Fluid Flows. Cambridge University Press.
Dritschel, D. G. 1988a Nonlinear stability bounds for inviscid, two-dimensional, parallel or circular flows with monotonic vorticity, and the analogous three-dimensional quasi-geostrophic flows. J. Fluid Mech. 191, 575581.
Dritschel, D. G. 1988b The repeated filamentation of two-dimensional vorticity interfaces. J. Fluid Mech. 194, 511547.
Dritschel, D. G. 1990 The stability of elliptical vortices in an external straining flow. J. Fluid Mech. 210, 223261.
Flierl, G. R. 1988 On the instability of geostrophic vortices. J. Fluid Mech. 197, 349388.
Gent, P. R. & McWilliams, J. C. 1986 The instability of circular vortices. Geophys. Astrophys. Fluid Dyn. 35, 209233.
Kida, S. 1981 Motion of an elliptic vortex in a uniform shear flow. J. Phys. Soc. Japan 50, 35173520.
Kloosterziel, R. C. & Carnevale, G. F. 1992 Formal stability of circular vortices. J. Fluid Mech. 242, 249278.
Love, A. E. H. 1893 On the stability of certain vortex motions. Proc. Lond. Math. Soc. 25, 1842.
McWilliams, J. C. 1989 Statistical properties of decaying geostrophic turbulenc. J. Fluid Mech. 198, 199230.
McWilliams, J. C. 1990 The vortices of geostrophic turbulence. J. Fluid Mech. 219, 387404.
Meacham, S. P. 1992 Quasigeostrophic, ellipsoidal vortices in a stratified fluid. Dyn. Atmos. Oceans 16, 189223.
Moore, D. W. & Saffman, P. G. 1971 Structure of a line vortex in an imposed strain. In Aircraft Wake Turbulence (ed. J. Olsen, A. Goldburg & N. Rogers), pp. 339354. Plenum.
Moore, D. W. & Saffman, P. G. 1975 The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346, 413425.
Pedlosky, J. 1979 Geophysical Fluid Dynamics. Springer.
Robinson, A. C. & Saffman, P. G. 1984 Three-dimensional stability of an elliptical vortex in a straining field. J. Fluid Mech. 142, 451466.
Sale, A. H. J. 1970 Remark on algorithm 352 [S22]; Characteristic values and associated solutions of Mathieu's differential equation. Commun Assoc. Computing Machinery 13, 750.
Tsai, C.-Y. & Widnall, S. E. 1976 The stability of short waves on a straight vortex filament in a weak externally imposed strain field. J. Fluid Mech. 73, 721733.
Widnall, S. E., Bliss, D. B. & Tsai, C.-Y. 1974 The instability of short waves on a vortex ring. J. Fluid Mech. 66, 3547.
MathJax is a JavaScript display engine for mathematics. For more information see

Baroclinic instability of Kirchhoff's elliptic vortex

  • Takeshi Miyazaki (a1) and Hideshi Hanazaki (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed