Skip to main content Accessibility help
×
Home

Arrest of the flow of wet granular matter

  • Klaus Roeller (a1), Johannes Blaschke (a1) (a2), Stephan Herminghaus (a1) (a2) and Jürgen Vollmer (a1) (a2)

Abstract

We study the arrest of three-dimensional flow of wet granular matter subject to a sinusoidal external force and a gravitational field confining the flow in the vertical direction. The minimal strength of the external force that is required to keep the system in motion, i.e. the critical force, is determined by considering the balance of injected and dissipated power. This provides a prediction whose quality is demonstrated by a data collapse for an extensive set of event-driven molecular-dynamics simulations where we varied the system size, particle number, the energy dissipated upon rupturing capillary bridges, and the bridge length at which rupture occurs. The same approach also works for systems that are kept at a fixed density by confining walls. In both cases, this universal method provides the critical force irrespective of the flow profile, and without specifying the hydrodynamic equations.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Arrest of the flow of wet granular matter
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Arrest of the flow of wet granular matter
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Arrest of the flow of wet granular matter
      Available formats
      ×

Copyright

The online version of this article is published within an Open Access environment subject to the conditions of the Creative Commons Attribution licence .

Corresponding author

Email address for correspondence: juergen.vollmer@ds.mpg.de

References

Hide All
Andreotti, B., Daerr, A. & Douady, S. 2002 Scaling laws in granular flows down a rough plane. Phys. Fluids 14 (1), 415.
Andreotti, B. & Douady, S. 2001 Selection of velocity profile and flow depth in granular flows. Phys. Rev. E 63 (3), 031305.
Antonyuk, S., Heinrich, S., Deen, N. & Kuipers, H. 2009 Influence of liquid layers on energy absorption during particle impact. Particuology 7 (4), 245259.
Aranson, I. S. & Tsimring, L. S. 2006 Patterns and collective behaviour in granular media: theoretical concepts. Rev. Mod. Phys. 78 (2), 641.
Berardi, C. R., Barros, K., Douglas, J. F. & Losert, W. 2010 Direct observation of stringlike collective motion in a two-dimensional driven granular fluid. Phys. Rev. E 81 (4), 041301.
Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. 2011 Jamming by shear. Nature 480 (7377), 355358.
Borzsonyi, T. & Ecke, R. E. 2007 Flow rule of dense granular flows down a rough incline. Phys. Rev. E 76 (3), 031301.
Cates, M. E., Wittmer, J. P., Bouchaud, J.-P. & Claudin, P. 1998 Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81 (9), 18411844.
Davis, R. H., Rager, D. A. & Good, B. T. 2002 Elastohydrodynamic rebound of spheres from coated surfaces. J. Fluid Mech. 468, 107119.
Donahue, C. M., Brewer, W. M., Davis, R. H. & Hrenya, C. M. 2012a Agglomeration and de-agglomeration of rotating wet doublets. J. Fluid Mech. 708, 128148.
Donahue, C. M., Davis, R. H., Kantak, A. A. & Hrenya, C. M. 2012b Mechanisms for agglomeration and deagglomeration following oblique collisions of wet particles. Phys. Rev. E 86, 021303.
Donahue, C. M., Hrenya, C. M. & Davis, R. H. 2010a Stokes’ cradle: Newton’s cradle with liquid coating. Phys. Rev. Lett. 105, 034501.
Donahue, C. M., Hrenya, C. M., Davis, R. H., Nakagawa, K. J., Zelinskaya, A. P. & Joseph, G. G. 2010b Stokes’ cradle: normal three-body collisions between wetted particles. J. Fluid Mech. 650, 479504.
Drocco, J. A., Hastings, M. B., Olson Reichhardt, C. J. & Reichhardt, C. 2005 Multiscaling at point $j$ : jamming is a critical phenomenon. Phys. Rev. Lett. 95 (8), 088001.
Rahbari, S. H. E., Vollmer, J., Herminghaus, S. & Brinkmann, M. 2009 A response function perspective on yielding of wet granular matter. Europhys. Lett. 87, 14002.
Fingerle, A., Roeller, K., Huang, K. & Herminghaus, S. 2008 Phase transitions far from equilibrium in wet granular matter. New J. Phys. 10 (5), 053020.
Forterre, Y. & Pouliquen, O. 2008 Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 124.
GDR MiDi, 2004 On dense granular flows. Eur. Phys. J. E 14, 341365.
Gollwitzer, F., Rehberg, I., Kruelle, C. A. & Huang, K. 2012 Coefficient of restitution for wet particles. Phys. Rev. E 86, 011303.
van Hecke, M. 2010 Jamming of soft particles: geometry, mechanics, scaling and isostaticity. J. Phys.: Condensed Matter 22 (3), 033101.
Herminghaus, S. 2005 Dynamics of wet granular matter. Adv. Phys. 54 (3), 221261.
Hoover, W. G. 1983 Nonequilibrium molecular dynamics. Annu. Rev. Phys. Chem. 34 (1), 103127.
Huang, K., Roeller, K. & Herminghaus, S. 2009 Universal and non-universal aspects of wet granular matter under vertical vibrations. Eur. Phys. J. Special Topics 179, 2532.
Jaeger, H. M., Nagel, S. R. & Behringer, R. P. 1996 Granular solids, liquids, and gases. Rev. Mod. Phys. 68 (4), 12591273.
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441, 727730.
Kadanoff, L. P. 1999 Built upon sand: theoretical ideas inspired by granular flows. Rev. Mod. Phys. 71 (1), 435444.
Kantak, A. A., Hrenya, C. M. & Davis, R. H. 2009 Initial rates of aggregation for dilute, granular flows of wet particles. Phys. Fluids 21, 023301.
Liao, C.-C. & Hsiau, S.-S. 2010 Experimental analysis of dynamic properties in wet sheared granular matter. Powder Technol. 197 (3), 222229.
Lois, G., Blawzdziewicz, J. & O’Hern, C. S. 2007 Jamming in attractive granular media. Proc. Appl. Maths. Mech. 7 (1), 10906051090606.
Lois, G., Blawzdziewicz, J. & O’Hern, C. S. 2008 Jamming transition and new percolation universality classes in particulate systems with attraction. Phys. Rev. Lett. 100, 028001.
Lois, G., Zhang, J., Majmudar, T. S., Henkes, S., Chakraborty, B., O’Hern, C. S. & Behringer, R. P. 2009 Stress correlations in granular materials: an entropic formulation. Phys. Rev. E 80, 060303.
Luding, S. 2009 Towards dense, realistic granular media in 2d. Nonlinearity 22 (12), R101R146.
Mitarai, N. & Nori, F. 2006 Wet granular materials. Adv. Phys. 55 (1–2), 145.
O’Hern, C. S., Silbert, L. E., Liu, A. J. & Nagel, S. R. 2003 Jamming at zero temperature and zero applied stress: the epitome of disorder. Phys. Rev. E 68 (1), 011306.
Pitois, O., Moucheront, P. & Chateau, X. 2000 Liquid bridge between two moving spheres: an experimental study of viscosity effects. J. Colloid Interface Sci. 231, 2631.
Quartier, L., Andreotti, B., Douady, S. & Daerr, A. 2000 Dynamics of a grain on a sandpile model. Phys. Rev. E 62 (6), 8299.
Rahbari, S. H. E., Vollmer, J., Herminghaus, S. & Brinkmann, M. 2009 A response function perspective on yielding of wet granular matter. Europhys. Lett. 87 (1), 14002.
Rahbari, S. H. E., Vollmer, J., Herminghaus, S. & Brinkmann, M. 2010 Fluidization of wet granulates under shear. Phys. Rev. E 82 (6), 061305.
Remy, B., Khinast, J. G. & Glasser, B. J. 2012. Wet granular flows in a bladed mixer: experiments and simulations of monodisperse spheres, AIChE J. (submitted).
Ren, J., Dijksman, J. A. & Behringer, R. P. 2011 Linear shear in a model granular system. CHAOS.
Roeller, K. 2010. Numerical simulations of wet granular matter. PhD thesis, University Goettingen.
Roeller, K., Vollmer, J. & Herminghaus, S. 2009 Unstable Kolmogorov flow in granular matter. CHAOS 19 (4), 041106.
Rognon, P. G., Roux, J.-N., Naaïm, M. & Chevoir, F. 2008 Dense flows of cohesive granular materials. J. Fluid Mech. 596, 2147.
Rognon, P. G., Roux, J.-N., Wolf, D., Naaïm, M. & Chevoir, F. 2006 Rheophysics of cohesive granular materials. Eur. Phys. Lett. 74 (4), 644.
Schall, P. & van Hecke, M. 2010 Shear bands in matter with granularity. Annu. Rev. Fluid Mech. 42 (1), 6788.
Schulz, B. M. & Schulz, M. 2006 The dynamics of wet granular matter. J. Non-Crystalline Solids 352 (42–49), 48774879.
Schulz, M., Schulz, B. M. & Herminghaus, S. 2003 Shear-induced solid–fluid transition in a wet granular medium. Phys. Rev. E 67 (5), 052301.
Silbert, L. E., Ertaş, D., Grest, G. S., Halsey, T. C., Levine, D. & Plimpton, S. J. 2001 Granular flow down an inclined plane: Bagnold scaling and rheology. Phys. Rev. E 64 (5), 051302.
Slotterback, S., Mailman, M., Ronaszegi, K., van Hecke, M., Girvan, M. & Losert, W. 2012 Onset of irreversibility in cyclic shear of granular packings. Phys. Rev. E 85 (2), 021309.
Tordesillas, A., Lin, Q., Zhang, J., Behringer, R. P. & Shi, J. 2011 Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59, 265296.
Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. 2001 Jamming phase diagram for attractive particles. Nature 411, 772775.
Ulrich, S., Aspelmeier, T., Roeller, K., Fingerle, A., Herminghaus, S. & Zippelius, A. 2009a Cooling and aggregation in wet granulates. Phys. Rev. Lett. 102 (14), 148002.
Ulrich, S., Aspelmeier, T., Zippelius, A., Roeller, K., Fingerle, A. & Herminghaus, S. 2009b Dilute wet granular particles: nonequilibrium dynamics and structure formation. Phys. Rev. E 80 (3), 031306.
Utter, B. & Behringer, R. P. 2008 Experimental measures of affine and nonaffine deformation in granular shear. Phys. Rev. Lett. 100, 208302.
Valverde, J. M., Quintanilla, M. A. S. & Castellanos, A. 2004 Jamming threshold of dry fine powders. Phys. Rev. Lett. 92 (25), 258303.
Zhang, J., Majmudar, T. S., Tordesillas, A. & Behringer, R. P. 2010 Statistical properties of a 2D granular material subjected to cyclic shear. Granul. Matt. 12 (2), 159172.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed