Skip to main content Accessibility help
×
Home

Area of scalar isosurfaces in homogeneous isotropic turbulence as a function of Reynolds and Schmidt numbers

  • Kedar Prashant Shete (a1) and Stephen M. de Bruyn Kops (a1)

Abstract

A fundamental effect of fluid turbulence is turbulent mixing, which results in the stretching and wrinkling of scalar isosurfaces. Thus, the area of isosurfaces is of interest in understanding turbulence in general, with specific applications in, for example, combustion and the identification of turbulent/non-turbulent interfaces. We report measurements of isosurface areas in 28 direct numerical simulations (DNS) of homogeneous isotropic turbulence with a mean scalar gradient resolved on up to $14\,256^{3}$ grid points with Taylor Reynolds number $Re_{\unicode[STIX]{x1D706}}$ ranging from 24 to 633 and Schmidt number $Sc$ ranging from 0.1 to 7. More precisely, we measure layers with very small but finite thickness. The continuous equation we evaluate converges exactly to the area in the limit of zero layer thickness. We demonstrate a method for numerically integrating this equation that, for a test case with an analytical solution, converges linearly towards the exact solution with decreasing layer width. By applying the technique to DNS data and testing for convergence with resolution of the simulations, we verify the resolution requirements for DNS recently proposed by Yeung et al. (Phys. Rev. Fluids, vol. 3 (6), 2018, 064603). We conclude that isosurface areas scale with the square root of the Taylor Péclet number $Pe_{\unicode[STIX]{x1D706}}$ between approximately 50 and 4429, with some departure from power-law scaling evident for $2.4<Pe_{\unicode[STIX]{x1D706}}<50$ . No independent effect of either $Re_{\unicode[STIX]{x1D706}}$ or $Sc$ is observed. The excellent scaling of area with $Pe_{\unicode[STIX]{x1D706}}^{1/2}$ occurs even though the probability density function of the scalar gradient is very close to exponential for $Re_{\unicode[STIX]{x1D706}}=98$ but approximately lognormal when $Re_{\unicode[STIX]{x1D706}}=633$ .

Copyright

Corresponding author

Email address for correspondence: kedar.kshete@gmail.com

References

Hide All
Almalkie, S. & de Bruyn Kops, S. M. 2012a Energy dissipation rate surrogates in incompressible Navier–Stokes turbulence. J. Fluid Mech. 697, 204236.
Almalkie, S. & de Bruyn Kops, S. M. 2012b Kinetic energy dynamics in forced, homogeneous, and axisymmetric stably stratified turbulence. J. Turbul. 13 (29), 129.
Antonia, R. A. & Sreenivasan, K. R. 1977 Lognormality of temperature dissipation in a turbulent boundary layer. Phys. Fluids 20 (11), 18001804.
Bohr, M. 2007 A 30 year retrospective on Dennard’s MOSFET scaling paper. IEEE Solid-State Circuits Society Newsletter 12 (1), 1113.
Bray, K. 2016 Laminar flamelets in turbulent combustion modeling. Combust. Sci. Technol. 188 (9), 13721375.
Bray, K. N. & Swaminathan, N. 2006 Scalar dissipation and flame surface density in premixed turbulent combustion. C. R. Méc. 334 (8–9), 466473.
de Bruyn Kops, S. M. 2015 Classical turbulence scaling and intermittency in stably stratified Boussinesq turbulence. J. Fluid Mech. 775, 436463.
de Bruyn Kops, S. M. & Riley, J. J. 1998a Direct numerical simulation of laboratory experiments in isotropic turbulence. Phys. Fluids 10 (9), 21252127.
de Bruyn Kops, S. M. & Riley, J. J. 1998b Scalar transport characteristics of the linear-eddy model. Combust. Flame 112 (1/2), 253260.
de Bruyn Kops, S. M. & Riley, J. J. 2001 Mixing models for large-eddy simulation of non-premixed turbulent combustion. J. Fluids Engng 123 (2), 341346.
de Bruyn Kops, S. M. & Riley, J. J. 2019 The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J. Fluid Mech. 860, 787821.
Catrakis, H. J., Aguirre, R. C. & Ruiz-Plancarte, J. 2002 Area-volume properties of fluid interfaces in turbulence: scale-local self-similarity and cumulative scale dependence. J. Fluid Mech. 462, 245254.
Chaudhuri, S., Kolla, H., Dave, H. L., Hawkes, E. R., Chen, J. H. & Law, C. K. 2017 Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combust. Flame 184, 273285.
Corrsin, S. & Kistler, A. L. 1955 Free-stream boundaries of turbulent flows. NACA Rep. 1224, 10331064.
Delichatsios, M. A. 1987 Air entrainment into buoyant jet flames and pool fires. Combust. Flame 70 (1), 3346.
Dennard, R. H., Gaensslen, F. H., Rideout, V. L., Bassous, E. & LeBlanc, A. R. 1974 Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9 (5), 256268.
Dimov, I. T., Penzov, A. A. & Stoilova, S. S. 2007 Parallel Monte Carlo approach for integration of the rendering equation. In Numerical Methods and Applications (ed. Boyanov, T., Dimova, S., Georgiev, K. & Nikolov, G.), pp. 140147. Springer.
Donzis, D. A., Yeung, P. K. & Sreenivasan, K. R. 2008 Dissipation and enstrophy in isotropic turbulence: resolution effects and scaling in direct numerical simulations. Phys. Fluids 20 (4), 045108.
Dopazo, C., Martin, J., Cifuentes, L. & Hierro, J. 2018 Strain, rotation and curvature of non-material propagating iso-scalar surfaces in homogeneous turbulence. Flow Turbul. Combust. 101 (1), 132.
Eswaran, V. & Pope, S. B. 1988 Direct numerical simulations of the turbulent mixing of a passive scalar. Phys. Fluids 31, 506520.
Federer, H. 1959 Curvature measures. Trans. Amer. Math. Soc. 93 (3), 418491.
Freedman, D. & Diaconis, P. 1981 On the histogram as a density estimator: l2 theory. Z. Wahrscheinlichkeit. 57 (4), 453476.
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007a Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 2. Accelerations and related matters. J. Fluid Mech. 589, 83102.
Gulitski, G., Kholmyansky, M., Kinzelbach, W., Lüthi, B., Tsinober, A. & Yorish, S. 2007b Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 3. Temperature and joint statistics of temperature and velocity derivatives. J. Fluid Mech. 589, 103123.
Hill, R. J. 1978 Models of the scalar spectrum for turbulent advection. J. Fluid Mech. 88 (3), 541562.
Ishihara, T., Gotoh, T. & Kaneda, Y. 2009 Study of high-Reynolds number isotropic turbulence by direct numerical simulation. Annu. Rev. Fluid Mech. 41, 165180.
Ishihara, T., Kaneda, Y., Yokokawa, M., Itakura, K. & Uno, A. 2007 Small-scale statistics in high-resolution direct numerical simulation of turbulence: Reynolds number dependence of one-point velocity gradient statistics. J. Fluid Mech. 592, 335366.
Ishihara, T., Morishita, K., Yokokawa, M., Uno, A. & Kaneda, Y. 2016 Energy spectrum in high-resolution direct numerical simulations of turbulence. Phys. Rev. Fluids 1, 082403.
Kahan, W. 1965 Pracniques: further remarks on reducing truncation errors. Commun. ACM 8 (1), 4048.
Kim, S. Y. & Bilger, R. W. 2007 Iso-surface mass flow density and its implications for turbulent mixing and combustion. J. Fluid Mech. 590, 381409.
Kolla, H. & Chen, J. H. 2018 Turbulent Combustion Simulations with High-Performance Computing. pp. 7397. Springer.
Lewiner, T., Lopes, H., Vieira, A. W. & Tavares, G. 2003 Efficient implementation of marching cubes’ cases with topological guarantees. J. Graph. Tools 8 (2), 115.
Liu, Y. S., Yi, J., Zhang, H., Zheng, G. Q. & Paul, J. C. 2010 Surface area estimation of digitized 3D objects using quasi-Monte Carlo methods. Pattern Recognition 43, 39003909.
Muschinski, A. & de Bruyn Kops, S. M. 2015 Investigation of Hill’s optical turbulence model by means of direct numerical simulation. J. Opt. Soc. Am. A 32 (12), 24232430.
Newman, T. S. & Yi, H. 2006 A survey of the marching cubes algorithm. Comput. Graph. 30 (5), 854879.
O’Neill, P. L. & Soria, J. 2005 The topology of homogeneous isotropic turbulence with passive scalar transport. In Proceedings of 12th Computational Techniques and Applications Conference, CTAC-2004 (ed. May, R. & Roberts, A. J.), Anziam J., vol. 46, pp. C1170C1187. Australian Mathematical Society.
Overholt, M. R. & Pope, S. B. 1998 A deterministic forcing scheme for direct numerical simulations of turbulence. Comput. Fluids 27, 1128.
Patera, J. & Skala, V. 2004 A comparison of fundamental methods for iso surface extraction. Machine Graphics and Vision 13 (4), 329343.
Payne, J. L. & Hassan, B.1988 Massively Parallel Computational Fluid Dynamics Calculations for Aerodynamics and Aerothermodynamics Applications.
Peters, N. 2000 Turbulent Combustion Cambridge University Press.
Pope, S. 1988 The evolution of surfaces in turbulence. Intl J. Engng Sci. 26 (5), 445469.
Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
Pope, S. B., Yeung, P. K. & Girimaji, S. S. 1989 The curvature of material surfaces in isotropic turbulence. Phys. Fluids A 1 (12), 20102018.
Portwood, G. D., de Bruyn Kops, S. M., Taylor, J. R., Salehipour, H. & Caulfield, C. P. 2016 Robust identification of dynamically distinct regions in stratified turbulence. J. Fluid Mech. 807, R2 (14 pages).
Press, W. H., Teukolsky, S. A., Vetterling, W. T. & Flannery, B. P. 2007 Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd edn. Cambridge University Press.
Raase, S. & Nordström, T. 2015 On the use of a many-core processor for computational fluid dynamics simulations. Procedia Comput. Sci. 51, 14031412.
Rao, K. J. & de Bruyn Kops, S. M. 2011 A mathematical framework for forcing turbulence applied to horizontally homogeneous stratified flow. Phys. Fluids 23, 065110.
Resnikoff, H. L. & Raymond, O. Jr 2012 Wavelet Analysis: The Scalable Structure of Information. Springer Science & Business Media.
Ricou, F. P. & Spalding, D. B. 1961 Measurements of entrainment by axisymmetrical turbulent jets. J. Fluid Mech. 11 (1), 2132.
Scheidegger, C. E., Schreiner, J. M., Duffy, B., Carr, H. & Silva, C. T. 2008 Revisiting histograms and isosurface statistics. IEEE Trans. Vis. Comput. Gr. 14 (6), 16591666.
Schroeder, W., Martin, K., Lorensen, B., Avila, L. S., Avila, R. & Law, C. C. 2006 The Visualization Toolkit An Object-Oriented Approach To 3D Graphics, 4th edn. Kitware.
Schumacher, J. & Sreenivasan, K. R. 2005 Statistics and geometry of passive scalars in turbulence. Phys. Fluids 17, 125107.
Schumacher, J., Sreenivasan, K. R. & Yakhot, V. 2007 Asymptotic exponents from low-Reynolds-number flows. New J. Phys. 9, 89.
Shete, K. P.2019 Calculation of isosurface areas and applications. Master’s thesis, University of Massachusetts Amherst, Amherst, MA.
Sobol’, I. M. 1967 On the distribution of points in a cube and the approximate evaluation of integrals. Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki 7 (4), 784802.
Sreenivasan, K. R. & Kailasnath, P. 1996 The passive scalar spectrum and the Obukhov–Corrsin constant. Phys. Fluids 8, 189196.
Swaminathan, N. & Bray, K. 2011 Turbulent Premixed Flames. Cambridge University Press.
Taveira, R. R. & da Silva, C. B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.
Vadhan, S. P. et al. 2012 Pseudorandomness. Foundations and Trends in Theoretical Computer Science 7 (1–3), 1336.
Vedula, P., Yeung, P. K. & Fox, R. O. 2001 Dynamics of scalar dissipation in isotropic turbulence: a numerical and modelling study. J. Fluid Mech. 433, 2960.
Watanabe, T. & Gotoh, T. 2004 Statistics of a passive scalar in homogeneous turbulence. New J. Phys. 6 (40), 136.
Watanabe, T. & Gotoh, T. 2007 Inertial-range intermittency and accuracy of direct numerical simulation for turbulence and passive scalar turbulence. J. Fluid Mech. 590, 117146.
Watanabe, T., Riley, J. J., de Bruyn Kops, S. M., Diamessis, P. J. & Zhou, Q. 2016 Turbulent/non-turbulent interfaces in wakes in stably stratified fluids. J. Fluid Mech. 797, R1.
Yakhot, V. & Sreenivasan, K. R. 2005 Anomalous scaling of structure functions and dynamic constraints on turbulence simulations. J. Stat. Phys. 121, 823841.
Yeung, P., Sreenivasan, K. & Pope, S. 2018 Effects of finite spatial and temporal resolution in direct numerical simulations of incompressible isotropic turbulence. Phys. Rev. Fluids 3 (6), 064603.
Yeung, P. K., Donzis, D. A. & Sreenivasan, K. R. 2005 High-Reynolds-number simulation of turbulent mixing. Phys. Fluids 17, 081703.
Yeung, P. K. & Sawford, B. L. 2002 Random-sweeping hypothesis for passive scalars in isotropic turbulence. J. Fluid Mech. 459, 129138.
Yurtoglu, M., Carton, M. & Storti, D. 2018 Treat all integrals as volume integrals: a unified, parallel, grid-based method for evaluation of volume, surface, and path integrals on implicitly defined domains. J. Inf. Sci. Engng 18 (2), 021013.
Zheng, T., You, J. & Yang, Y. 2017 Principal curvatures and area ratio of propagating surfaces in isotropic turbulence. Phys. Rev. Fluids 2, 103201.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Area of scalar isosurfaces in homogeneous isotropic turbulence as a function of Reynolds and Schmidt numbers

  • Kedar Prashant Shete (a1) and Stephen M. de Bruyn Kops (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed