Skip to main content Accessibility help
×
Home

Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface

  • A. V. Kuznetsov (a1), D. G. Blinov (a2), A. A. Avramenko (a2), I. V. Shevchuk (a3), A. I. Tyrinov (a2) and I. A. Kuznetsov (a4)...

Abstract

In this paper, we have developed an approximate method for modelling the flow of embryonic fluid in a ventral node. We simplified the problem as flow in a two-dimensional cavity; the effect of rotating cilia was modelled by specifying a constant vorticity at the edge of the ciliated layer. We also developed an approximate solution for morphogen transport in the nodal pit. The solutions were obtained utilizing the proper generalized decomposition (PGD) method. We compared our approximate solutions with the results of numerical simulation of flow caused by the rotation of 81 cilia, and obtained reasonable agreement in most of the flow domain. We discuss locations where agreement is less accurate. The obtained semi-analytical solutions simplify the analysis of flow and morphogen distribution in a nodal pit.

Copyright

Corresponding author

Email address for correspondence: avkuznet@ncsu.edu

References

Hide All
Afzelius, B. 1976 Human syndrome caused by immotile cilia. Science 193, 317319.
Ammar, A., Mokdad, B., Chinesta, F. & Keunings, R. 2006 A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids. J. Non-Newtonian Fluid Mech. 139, 153176.
Aw, S. & Levin, M. 2008 What’s left in asymmetry? Dev. Dyn. 237, 34533463.
Bartoloni, L., Blouin, J., Pan, Y., Gehrig, C., Maiti, A., Scamuffa, N., Rossier, C., Jorissen, M., Armengot, M., Meeks, M., Mitchison, H., Chung, E., Delozier-Blanchet, C., Craigen, W. & Antonarakis, S. 2002 Mutations in the DNAH11 (axonemal heavy chain dynein type 11) gene cause one form of situs inversus totalis and most likely primary ciliary dyskinesia. Proc. Natl Acad. Sci. USA 99, 1028210286.
Beddington, R. & Robertson, E. 1999 Axis development and early asymmetry in mammals. Cell 96, 195209.
Blake, J. 1973 Flow in tubules due to ciliary activity. Bull. Math. Biol. 35, 513523.
Blake, J., Liron, N. & Aldis, G. 1982 Flow patterns around ciliated microorganisms and in ciliated ducts. J. Theor. Biol. 98, 127141.
Borovina, A., Superina, S., Voskas, D. & Ciruna, B. 2010 Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat. Cell Biol. 12, 407412.
Buceta, J., Ibanes, M., Rasskin-Gutman, D., Okada, Y., Hirokawa, N. & Izpisua-Belmonte, J. 2005 Nodal cilia dynamics and the specification of the left/right axis in early vertebrate embryo development. Biophys. J. 89, 21992209.
Cartwright, J. H. E., Piro, N., Piro, O. & Tuval, I. 2007 Embryonic nodal flow and the dynamics of nodal vesicular parcels. J. R. Soc. Interface 4, 4955.
Cartwright, J. H. E., Piro, N., Piro, O. & Tuval, I. 2008 Fluid dynamics of nodal flow and left-right patterning in development. Dev. Dyn. 237, 34773490.
Cartwright, J., Piro, O. & Tuval, I. 2004 Fluid-dynamical basis of the embryonic development of left-right asymmetry in vertebrates. Proc. Natl Acad. Sci. USA 101, 72347239.
Chen, D., Norris, D. & Ventikos, Y. 2011 Ciliary behaviour and mechano-transduction in the embryonic node: computational testing of hypotheses. Med. Engng Phys. 33, 857867.
Chinesta, F., Ammar, A. & Cueto, E. 2010 Recent advances and new challenges in the use of the proper generalized decomposition for solving multidimensional models. Arch. Comput. Meth. Engng 17, 327350.
Dumon, A., Allery, C. & Ammar, A. 2011 Proper general decomposition (PGD) for the resolution of Navier–Stokes equations. J. Comput. Phys. 230, 13871407.
Evans, B. A., Shields, A. R., Carroll, R. L., Washburn, S., Falvo, M. R. & Superfine, R. 2007 Magnetically actuated nanorod arrays as biomimetic cilia. Nano Lett. 7, 14281434.
Harvey, R. 1998 Links in the left/right axial pathway. Cell 94, 273276.
Hashimoto, M., Shinohara, K., Wang, J., Ikeuchi, S., Yoshiba, S., Meno, C., Nonaka, S., Takada, S., Hatta, K., Wynshaw-Boris, A. & Hamada, H. 2010 Planar polarization of node cells determines the rotational axis of node cilia. Nat. Cell Biol. 12, 170176.
Hirokawa, N., Okada, Y. & Tanaka, Y. 2009a Fluid dynamic mechanism responsible for breaking the left-right symmetry of the human body: the nodal flow. Annu. Rev. Fluid Mech. 41, 5372.
Hirokawa, N., Tanaka, Y. & Okada, Y. 2009b Left-right determination: involvement of molecular motor KIF3, cilia, and nodal flow. Cold Spring Harbor Perspectives in Biology 1, a000802.
Hirokawa, N., Tanaka, Y., Okada, Y. & Takeda, S. 2006 Nodal flow and the generation of left-right asymmetry. Cell 125, 3345.
Kicheva, A., Bollenbach, T., Wartlick, O., Jülicher, F. & Gonzalez-Gaitan, M. 2012 Investigating the principles of morphogen gradient formation: from tissues to cells. Curr. Opin. Genet. Dev. 22, 527532.
Kicheva, A., Pantazis, P., Bollenbach, T., Kalaidzidis, Y., Bittig, T., Juelicher, F. & Gonzalez-Gaitan, M. 2007 Kinetics of morphogen gradient formation. Science 315, 521525.
Lyons, R. A., Saridogan, E. & Djahanbakhch, O. 2006 The reproductive significance of human fallopian tube cilia. Hum. Reprod. Update 12, 363372.
Matsui, H., Randell, S., Peretti, S., Davis, C. & Boucher, R. 1998 Coordinated clearance of periciliary liquid and mucus from airway surfaces. J. Clin. Invest. 102, 11251131.
McGrath, J., Somlo, S., Makova, S., Tian, X. & Brueckner, M. 2003 Two populations of node monocilia initiate left-right asymmetry in the mouse. Cell 114, 6173.
Nonaka, S., Shiratori, H., Saijoh, Y. & Hamada, H. 2002 Determination of left-right patterning of the mouse embryo by artificial nodal flow. Nature 418, 9699.
Nonaka, S., Tanaka, Y., Okada, Y., Takeda, S., Harada, A., Kanai, Y., Kido, M. & Hirokawa, N. 1998 Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95, 829837.
Nouy, A. 2010 A priori model reduction through proper generalized decomposition for solving time-dependent partial differential equations. Comput. Meth. Appl. Engng 199, 16031626.
Okada, Y., Takeda, S., Tanaka, Y., Belmonte, J. & Hirokawa, N. 2005 Mechanism of nodal flow: a conserved symmetry breaking event in left-right axis determination. Cell 121, 633644.
Pruliere, E., Chinesta, F. & Ammar, A. 2010 On the deterministic solution of multidimensional parametric models using the proper generalized decomposition. Math. Comput. Simul. 81, 791810.
Raya, A. & Belmonte, J. 2006 Left-right asymmetry in the vertebrate embryo: from early information to higher-level integration. Nature Reviews Genetics 7, 283293.
Shields, A. R., Fiser, B. L., Evans, B. A., Falvo, M. R., Washburn, S. & Superfine, R. 2010 Biomimetic cilia arrays generate simultaneous pumping and mixing regimes. Proc. Natl Acad. Sci. USA 107, 1567015675.
Shinohara, K., Kawasumi, A., Takamatsu, A., Yoshiba, S., Botilde, Y., Motoyama, N., Reith, W., Durand, B., Shiratori, H. & Hamada, H. 2012 Two rotating cilia in the node cavity are sufficient to break left-right symmetry in the mouse embryo. Nat. Commun. 3, 622.
Smith, A. A., Johnson, T. D., Smith, D. J. & Blake, J. R. 2012 Symmetry breaking cilia-driven flow in the zebrafish embryo. J. Fluid Mech. 705, 2645.
Smith, D. J., Blake, J. R. & Gaffney, E. A. 2008 Fluid mechanics of nodal flow due to embryonic primary cilia. J. R. Soc. Interface 5, 567573.
Smith, D. J., Gaffney, E. A. & Blake, J. R. 2009 Mathematical modelling of cilia-driven transport of biological fluids. Proc. R. Soc. Lond. A 465, 24172439.
Smith, D. J., Smith, A. A. & Blake, J. R. 2011 Mathematical embryology: the fluid mechanics of nodal cilia. J. Engng Maths 70, 255279.
Supp, D., Witte, D., Potter, S. & Brueckner, M. 1997 Mutation of an axonemal dynein affects left right asymmetry in inversus viscerum mice. Nature 389, 963966.
Tabin, C. & Vogan, K. 2003 A two-cilia model for vertebrate left-right axis specification. Genes Dev. 17, 16.
Takamatsu, A., Shinohara, K., Ishikawa, T. & Hamada, H. 2013 Hydrodynamic phase locking in mouse node cilia. Phys. Rev. Lett. 110, 248107.
Tanaka, Y., Okada, Y. & Hirokawa, N. 2005 FGF-induced vesicular release of sonic hedgehog and retinoic acid in leftward nodal flow is critical for left-right determination. Nature 435, 172177.
Vilfan, A. & Julicher, F. 2006 Hydrodynamic flow patterns and synchronization of beating cilia. Phys. Rev. Lett. 96, 058102.
Yoshiba, S., Shiratori, H., Kuo, I. Y., Kawasumi, A., Shinohara, K., Nonaka, S., Asai, Y., Sasaki, G., Belo, J. A., Sasaki, H., Nakai, J., Dworniczak, B., Ehrlich, B. E., Pennekamp, P. & Hamada, H. 2012 Cilia at the node of mouse embryos sense fluid flow for left-right determination via Pkd2. Science 338, 226231.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Approximate modelling of the leftward flow and morphogen transport in the embryonic node by specifying vorticity at the ciliated surface

  • A. V. Kuznetsov (a1), D. G. Blinov (a2), A. A. Avramenko (a2), I. V. Shevchuk (a3), A. I. Tyrinov (a2) and I. A. Kuznetsov (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed