Skip to main content Accessibility help
×
×
Home

The anatomy of large-scale motion in atmospheric boundary layers

  • G. G. Katul (a1)

Abstract

The atmospheric boundary layer is the level of the atmosphere where all human activities occur. It is a layer characterized by its turbulent flow state, meaning that the velocity, temperature and scalar concentrations fluctuate over scales that range from less than a millimetre to several kilometres. It is those fluctuations that make dispersion of pollutants and transport of heat, momentum as well as scalars such as carbon dioxide or cloud-condensation nuclei efficient. It is also the layer where a ‘hand-shake’ occurs between activities on the land surface and the climate system, primarily due to the action of large energetic swirling motions or eddies. The atmospheric boundary layer experiences dramatic transitions depending on whether the underlying surface is being heated or cooled. The existing paradigm describing the size and energetics of large-scale and very large-scale eddies in turbulent flows has been shaped by decades of experiments and simulations on smooth pipes and channels with no surface heating or cooling. The emerging picture, initiated by A. A. Townsend in 1951, is that large- and very large-scale motions appear to be approximated by a collection of hairpin-shaped vortices whose population density scales inversely with distance from the boundary. How does surface heating, quintessential to the atmospheric boundary layer, alter this canonical picture? What are the implications of such a buoyancy force on the geometry and energy distribution across velocity components in those large eddies? How do these large eddies modulate small eddies near the ground? Answering these questions and tracking their consequences to existing theories used today to describe the flow statistics in the atmospheric boundary layer are addressed in the work of Salesky & Anderson (J. Fluid Mech., vol. 856, 2018, pp. 135–168). The findings are both provocative and surprisingly simple.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The anatomy of large-scale motion in atmospheric boundary layers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The anatomy of large-scale motion in atmospheric boundary layers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The anatomy of large-scale motion in atmospheric boundary layers
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: gaby@duke.edu

References

Hide All
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.
Hutchins, N. & Marusic, I. 2007 Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. Lond. A 365 (1852), 647664.
Kader, B. A. & Yaglom, A. M. 1990 Mean fields and fluctuation moments in unstably stratified turbulent boundary layers. J. Fluid Mech. 212, 637662.
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.
Li, D. & Bou-Zeid, E. 2011 Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol. 140 (2), 243262.
Marusic, I., Mathis, R. & Hutchins, N. 2010a Predictive model for wall-bounded turbulent flow. Science 329 (5988), 193196.
Marusic, I., McKeon, B., Monkewitz, P. A., Nagib, H. M., Smits, A. J. & Sreenivasan, K. R. 2010b Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues. Phys. Fluids 22 (6), 065103.
Marusic, I. & Monty, J. P. 2019 Attached eddy model of wall turbulence. Annu. Rev. Fluid Mech. 51, doi:10.1146/annurev-fluid-010518-040427.
Monin, A. S. & Obukhov, A. M. F. 1954 Basic laws of turbulent mixing in the surface layer of the atmosphere. Tr. Akad. Nauk SSSR Geophiz. 24 (151), 163187.
Monty, J. P., Stewart, J. A., Williams, R. C. & Chong, M. S. 2007 Large-scale features in turbulent pipe and channel flows. J. Fluid Mech. 589, 147156.
Salesky, S. & Anderson, W. 2018 Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J. Fluid Mech. 856, 135168.
Salesky, S., Chamecki, M. & Bou-Zeid, E. 2017 On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol. 163 (1), 4168.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Fluid Mechanics
  • ISSN: 0022-1120
  • EISSN: 1469-7645
  • URL: /core/journals/journal-of-fluid-mechanics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×
MathJax

JFM classification

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed