Skip to main content Accessibility help

Analysis of the dripping–jetting transition in compound capillary jets

  • M. A. HERRADA (a1), J. M. MONTANERO (a2), C. FERRERA (a1) and A. M. GAÑÁN-CALVO (a1)


We examine the behaviour of a compound capillary jet from the spatio-temporal linear stability analysis of the Navier–Stokes equations. We map the jetting–dripping transition in the parameter space by calculating the Weber numbers for which the convective/absolute instability transition occurs. If the remaining dimensionless parameters are set, there are two critical Weber numbers that verify Brigg's pinch criterion. The region of absolute (convective) instability corresponds to Weber numbers smaller (larger) than the highest value of those two Weber numbers. The stability map is affected significantly by the presence of the outer interface, especially for compound jets with highly viscous cores, in which the outer interface may play an important role even though it is located very far from the core. Full numerical simulations of the Navier–Stokes equations confirm the predictions of the stability analysis.


Corresponding author

Email address for correspondence:


Hide All
Barrero, A. & Loscertales, I. G. 2007 Micro- and nanoparticles via capillary flows. Annu. Rev. Fluid Mech. 39, 89106.
Basaran, O. A. 2002 Small-scale free surface flows with breakup: drop formation and emerging applications. AIChE J. 48, 18421848.
Bocanegra, R., Sampedro, J. L., Gañán-Calvo, A. M. & Marquez, M. 2005 Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance. J. Microencapsul. 22, 745759.
Briggs, R. J. 1964 Electron-Stream Interaction with Plasmas. MIT Press.
Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 2000 Temporal instability of compound threads and jets. J. Fluid Mech. 420, 125.
Chauhan, A., Maldarelli, C., Papageorgiou, D. T. & Rumschitzki, D. S. 2006 The absolute instability of an inviscid compound jet. J. Fluid Mech. 549, 8198.
Christopher, G. F. & Anna, S. L. 2007 Microfluidic methods for generating continuous droplet streams. J. Phys. D: Appl. Phys. 40, R319R336.
Cohen, I., Li, H., Hougland, J. L., Mrksich, M. & Nagel, S. R. 2001 Using selective withdrawal to coat microparticles. Science 292, 265267.
Craster, R. V., Matar, O. K. & Papageorgiou, D. T. 2005 On compound liquid threads with large viscosity contrasts. J. Fluid Mech. 533, 95124.
Funada, T., Joseph, D. D. & Yamashita, S. 2004 Stability of a liquid jet into incompressible gases and liquids. Intl J. Multiphase Flow 30, 12791310.
Gañán-Calvo, A. M. 1998 Generation of steady liquid microthreads and micron-sized monodisperse sprays in gas streams. Phys. Rev. Lett. 80, 285288.
Gañán-Calvo, A. M. 2008 Unconditional jetting. Phys. Rev. E 78, 026304.
Gañán-Calvo, A. M., González-Prieto, R., Riesco-Chueca, P., Herrada, M. A. & Flores-Mosquera, M. 2007 Focusing capillary jets close to the continuum limit. Nature Phys. 3, 737742.
Gañán-Calvo, A. M., Herrada, M. A. & Garstecki, P. 2006 Bubbling in unbounded coflowing liquids. Phys. Rev. Lett. 96, 124504 (1–4).
Gañán-Calvo, A. M. & Montanero, J. M. 2009 Revision of capillary cone-jet physics: electrospray and flow focusing. Phys. Rev. E 79, 066305 (1–18).
Guillot, P., Colin, A., Utada, A. S. & Ajdari, A. 2007 Stability of a jet in confined pressure-driven biphasic flows at low Reynolds numbers. Phys. Rev. Lett. 99, 104502.
He, Y. 2008 Application of flow-focusing to the breakup of an emulsion jet for the production of matrix-structured microparticles. Chem. Engng Sci. 63, 25002507.
Healey, J. J. 2007 Enhancing the absolute instability of a boundary layer by adding a far-way plate. J. Fluid Mech. 579, 2961.
Healey, J. J. 2008 Inviscid axisymmetric absolute instability of swirling jets. J. Fluid Mech. 613, 133.
Healey, J. J. 2009 Destabilizing effects of confinement on homogeneous mixing layers. J. Fluid Mech. 623, 241271.
Herrada, M. A., Gañán-Calvo, A. M., Ojeda-Monge, A., Bluth, B. & Riesco-Chueca, P. 2008 Liquid flow focused by a gas: jetting, dripping, and recirculation. Phys. Rev. E 78, 036323 (1–16).
Huerre, P. & Monkewitz, P. A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22, 473537.
Juniper, M. P. 2007 The full response of two-dimensional jet/wake flows and implications for confinement. J. Fluid Mech. 590, 163185.
Khorrami, M. R. 1991 A Chebyshev spectral collocation method using a staggered grid for the stability of cylindrical flows. Intl J. Numer. Methods Fluids 12, 825833.
Leib, S. J. & Goldstein, M. E. 1986 The generation of capillary instabilities on a liquid jet. J. Fluid Mech. 168, 479500.
Loscertales, I. G., Barrero, A., Guerrero, I., Cortijo, R., Marquez, M. & Gañán-Calvo, A. M. 2002 Micro/nano encapsulation via electrified coaxial liquid jets. Science 295, 16951698.
Montanero, J. M. & Gañán-Calvo, A. M. 2008 Stability of coflowing capillary jets under nonaxisymmetric perturbations. Phys. Rev. E 77, 046301.
Sanz, A. & Masseguer, J. 1985 One-dimensional linear analysis of the compound jet. J. Fluid Mech. 159, 5568.
Si, T., Li, F., Yin, X. & Yin, X. 2009 Modes in flow focusing and instability of coaxial liquid–gas jets. J. Fluid Mech. 629, 123.
Stone, H. A., Stroock, A. D. & Adjari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.
Suryo, R., Doshi, P. & Basaran, A. 2006 Nonlinear dynamics and breakup of compound jets. Phys. Fluids 18, 082107.
Tomotika, S. 1935 On the instability of a cylindrical thread of a viscous liquid surrounded by another viscous liquid. Proc. R. Soc. Lond. A 150, 322337.
Umbanhowar, P. B., Prasad, V. & Weitz, D. A. 2000 Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16, 347351.
Utada, A. S., Fernández-Nieves, A., Gordillo, J. M. & Weitz, D. A. 2008 Absolute instability of a liquid jet in a coflowing stream. Phys. Rev. Lett. 100, 014502 (1–4).
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D. Stone, H. A. & Weitz, D. A. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308, 537541.
MathJax is a JavaScript display engine for mathematics. For more information see


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed