Skip to main content Accessibility help

Analysis of droplet stability after ejection from an inkjet nozzle

  • Yonghong Zhong (a1), Haisheng Fang (a1), Qianli Ma (a1) and Xuran Dong (a1)


Inkjet technology is a commendable tool in many applications including graphics printing, bioengineering and micro-electromechanical systems (MEMS). Droplet stability is a key factor influencing inkjet performance. The stability can be analysed using dimensionless numbers that usually combine thermophysical properties and system dimensions. In this paper, a drop-on-demand (DOD) inkjet experimental system is established. A numerical model is developed to investigate the influence of the operating conditions on droplet stability, including nozzle dimensions, driving parameters (the pulse amplitude and width used to drive droplet formation) and fluid properties. The results indicate that the stability can be improved by decreasing the pulse amplitude and width, decreasing the fluid density and viscosity or increasing the nozzle diameter and fluid surface tension. Based on case analysis and modelling, a dimensionless number ( $Z$ ), the reciprocal of the Ohnesorge number, is numerically determined for a stable droplet to lie in a range between 4 and 8. To explicitly combine the driving parameters, a new stability criterion, $Pj$ , is further proposed. A general rule taking into account both $Pj$ and $Z$ is proposed for choosing appropriate driving parameters to eject stable droplets for a known nozzle and fluid, which is further validated by experiments.


Corresponding author

Email address for correspondence:


Hide All
Ambravaneswaran, B., Wilkes, E. D. & Basaran, O. A. 2002 Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14, 26062621.
Bogy, D. B. & Talke, F. 1984 Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices. IBM J. Res. Dev. 28, 314321.
Calvert, P. 2001 Inkjet printing for materials and devices. Chem. Mater. 13, 32993305.
Chen, A. U. & Basaran, O. A. 2002 A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys. Fluids 14, L1L4.
Choi, I. H., Kim, Y. K., Lee, S., Lee, S. H. & Kim, J. 2015 A pneumatic drop-on-demand printing system with an extended printable liquid range. J. Microelectromech. Syst. 24, 768770.
Dong, H., Carr, W. W. & Morris, J. F. 2006a An experimental study of drop-on-demand drop formation. Phys. Fluids 18, 18421881.
Dong, H., Carr, W. W. & Morris, J. F. 2006b Visualization of drop-on-demand inkjet: drop formation and deposition. Rev. Sci. Instrum. 77, 085101.
Duineveld, P. C. & Haskal, E. I. 2002 Ink-jet printing of polymer light-emitting devices. Proc. SPIE 4464, 5967.
Fromm, J. E. 1984 Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J. Res. Dev. 28, 322333.
Gao, Z., Ng, K., Furlani, E., Chwalek, J. & Hawkins, G. 2010 MEMS-based microfluidic devices. In Paper Presented at the ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, pp. 863868. ASME.
Gardini, D., Dondi, M., Costa, A. L., Matteucci, F., Blosi, M., Galassi, C. & Cinotti, E. 2008 Nano-sized ceramic inks for drop-on-demand ink-jet printing in quadrichromy. J. Nanosci. Nanotechnol. 8, 19791988.
de Jong, J., de Bruin, G., Reinten, H., van den Berg, M., Wijshoff, H., Versluis, M. & Lohse, D. 2006 Air entrapment in piezo-driven inkjet printheads. J. Acoust. Soc. Am. 120, 12571265.
de Jong, J., Versluis, M., de Bruin, G., Lohse, D., Reinten, H., van den Berg, M. & de Jong, N. 2005 Acoustical and optical characterization of air entrapment in piezo-driven inkjet printheads. Proc. IEEE-IUS 2, 1270.
Jong, J. D., Jeurissen, R., Borel, H., Berg, M. V. D., Wijshoff, H., Reinten, H. & Lohse, D. 2006 Entrapped air bubbles in piezo-driven inkjet printing: their effect on the droplet velocity. Phys. Fluids 18, 24.
Jungst, T., Smolan, W., Schacht, K., Scheibel, T. & Groll, J. 2016 Strategies and molecular design criteria for 3D printable hydrogels. Chem. Rev. 116, 1496.
Murphy, S. V. & Atala, A. 2014 3D bioprinting of tissues and organs. Nat. Biotechnol. 32, 773.
Olsson, E. & Kreiss, G. 2005 A conservative level set method for two phase flow. J. Comput. Phys. 210, 225246.
Olsson, E., Kreiss, G. & Zahedi, S. 2007 A conservative level set method for two phase flow II. J. Comput. Phys. 225, 785807.
Rayleigh, Lord 1878 On the instability of jets. Proc. Lond. Math. Soc. 1, 413.
Reis, N. & Derby, B. 2000 Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. Mrs Online Proceedings Library Archive 625, 117122.
Smith, P. J., Shin, D. Y., Stringer, J. E., Derby, B. & Reis, N. 2006 Direct ink-jet printing and low temperature conversion of conductive silver patterns. J. Mater. Sci. 41, 41534158.
Vaezi, M., Seitz, H. & Yang, S. 2013 Erratum to: A review on 3D micro-additive manufacturing technologie. Intl J. Adv. Manuf. Technol. 67, 19571957.
Wijshoff, H. 2004 Free surface flow and acousto-elastic interaction in piezo inkjet. In Proc. NSTI Nanotechnology Conf. and Trade Show, vol. 2, pp. 215218.
Wijshoff, H. 2006 Manipulating drop formation in piezo acoustic inkjet. In NIP & Digital Fabrication Conference, vol. 2006, (1), pp. 7982. Society for Imaging Science and Technology.
Wijshoff, H. H. 2012 Acoustic monitoring. Inkjet-based Micromanuf. 9, 145158.
Zhang, X. & Basaran, O. A. 1995 An experimental study of dynamics of drop formation. Phys. Fluids 7, 11841203.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Analysis of droplet stability after ejection from an inkjet nozzle

  • Yonghong Zhong (a1), Haisheng Fang (a1), Qianli Ma (a1) and Xuran Dong (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed