Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-20T04:32:08.052Z Has data issue: false hasContentIssue false

An infinite-series solution for the creeping motion through an orifice of finite length

Published online by Cambridge University Press:  20 April 2006

Zeev Dagan
Affiliation:
The City College of The City University of New York, New York
Sheldon Weinbaum
Affiliation:
The City College of The City University of New York, New York
Robert Pfeffer
Affiliation:
The City College of The City University of New York, New York

Abstract

This paper presents an infinite-series solution to the creeping viscous motion of a fluid through low- and moderate-aspect-ratio pores. The flow field is divided into two simply bounded regions: a cylindrical volume bounded by the walls of the pore and the entrance and exit planes, and an infinite half-space outside the pore. Analytic solutions are first obtained in each region for unknown functions representing arbitrary axial and radial velocity profiles at the pore entrance (exit). These unknown functions are then determined by matching the normal and tangential stress at the pore opening.

The results indicate that the velocity profile approaches to within 1·5 per cent of a Poiseuille profile after a short entrance distance of half the pore radius. In the far field the solution matches exactly the streamline pattern for a flow through an orifice of zero thickness obtained by Sampson (1891). The pressure drop across the pore exhibits linear dependence on the aspect ratio and is closely approximated (less than one per cent error) by a simple algebraic expression.

Type
Research Article
Copyright
© 1982 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Dagan, Z., Weinbaum, S. & Pfeffer, R. 1982 J. Fluid Mech. (in press).
Dean, W. R. & Montagnon, P. E. 1949 Proc. Camb. Phil. Soc. 45, 389.
Fahraeus, R. 1929 Physiol. Rev. 9, 241.
Fahraeus, R. & Lindqvist, T. 1931 Am. J. Physiol. 96, 562.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1978 J. Fluid Mech. 84, 79.
Ganatos, P., Pfeffer, R. & Weinbaum, S. 1980 J. Fluid Mech. 99, 755.
Ganatos, P., Weinbaum, S. & Pfeffer, R. 1980 J. Fluid Mech. 99, 739.
Gluckman, M. J., Pfeffer, R. & Weinbaum, S. 1971 J. Fluid Mech. 50, 705.
Haberman, W. L. & Sayre, R. M. 1958 David W. Taylor Model Basin Rep. no. 1143. Washington, D.C.
Kanaoka, C., Emi, H. & Nskada, K. 1974 Kagaku Kogaku 38, 223.
Leichtberg, S., Pfeffer, R. & Weinbaum, S. 1976 Int. J. Multi-phase Flow 3, 147.
Lugt, H. J. & Schwiderski, E. W. 1965 Proc. R. Soc. Lond. A 285, 382.
Luke, Y. L. 1969 The Special Functions and their Approximation, vol. 2. Academic.
Manton, I. L. 1978 Atmos. Environ. 12, 1669.
Oberhettinger, F. 1972 Tables of Bessel Transforms. Springer.
Parker, R. D. & Buzzard, G. H. 1978 J. Aerosol. Sci. 9, 7.
Parmet, I. L. & Saibel, E. 1965 Comm. Pure Appl. Math. 18, 17.
Sampson, R. A. 1891 Phil. Trans. R. Soc. Lond. A 182, 449.
Skalak, R., Chen, P. H. & Chien, S. 1972 Biorheol. 9, 449.
Smith, T. N. & Phillips, C. R. 1975 Environ. Sci. Tech. 9, 564.
Tranter, C. J. 1951 Quart. J. Math. 2 (2), 60.
Watson, G. M. 1958 A Treatise on the Theory of Bessel Functions, 2nd edn. Cambridge University Press.
Well, H. & Schenectady, N. Y. 1951 J. Appl. Mech. 18, 267.
Weinbaum, S. 1968 J. Fluid Mech. 33, 38.
Weinbaum, S. & Caro, C. C. 1976 J. Fluid Mech. 74, 611.