Skip to main content Accessibility help
×
Home

An experimental investigation on the interaction of hydraulic jumps formed by two normal impinging circular liquid jets

  • R. P. KATE (a1), P. K. DAS (a1) and SUMAN CHAKRABORTY (a1)

Abstract

The flow field due to two normal impinging liquid jets is different from the flow field associated with a single normal impinging liquid jet, and even from the flow field around two normal impinging compressible fluid jets. Depending on the spacing between the two jets and their relative strengths, different kinds of hydraulic jump interactions are possible, resulting in a variety of flow patterns. The present study experimentally elucidates the jump--jump interactions formed in such cases, for different values of inter-jet spacings and for different strengths of the individual jets. Analogous flow fields associated with the interactions between a single impinging jet and a fence are also studied to allow convenient experimental flow vizualizations.

Copyright

References

Hide All
Adarkar, D. B. & Hall, G. R. 1969 The ‘fountain effect’ and VTOL exhaust ingestion. J. Aircraft 6, 109.
Arakeri, J. H. & Rao, A. 1996 On radial flow on a horizontal surface and the circular hydraulic jump. J. Indian Inst. Sci. 76, 7391.
Aristoff, J. M., Leblanc, J. D., Hosoi, A. E. & Bush, J. W. M. 2004 Viscous hydraulic jumps. Phys. Fluids 16, S4.
Barata, J. M. M. 1996 Fountain flows produced by multiple impinging jets in a crossflow AIAA J. 34, 25232530.
Beltos, S. 1976 Oblique impingement of circular turbulent jets. J Hydraul. Res. 14 1736.
Blackford, B. L. 1996 The hydraulic jump in radially spreading flow: A new model and new experimental data. Am. J. Phys. 64, 164169.
Bohr, T., Dimon, P. & Putkaradze, V. 1993 Shallow-water approach to the circular hydraulic jump. J. Fluid Mech. 254, 635648.
Brechet, Y. & Néda, Z, 1999 On the circular hydraulic jump. Am. J. Phys. 67, 723731.
Bremond, N. & Villermaux, E. 2006 Atomization by jet impact. J. Fluid Mech. 549, 273306.
Bush, J. W. M. & Aristoff, J. M. 2003 The influence of surface tension on the circular hydraulic jump. J. Fluid. Mech. 489, 229238.
Bush, J. W. M., Aristoff, J. M. & Hosoi, A. E. 2006 An experimental investigation of the stability of the circular hydraulic jump. J. Fluid. Mech. 558, 3352.
Bush, J. W. M. & Hasha, A. E. 2004 On the collision of laminar jets: fluid chains and fishbones. J. Fluid. Mech. 511, 285310.
Cabrita, P. M., Saddington, A. J. & Knowles, K. 2005 PIV measurements in a twin-jet STOVL fountain flow. Aeronaut. J. 109, 439449.
Choo, Y. J. & Kang, B. S. 2001 Parametric study on impinging-jet liquid sheet thickness distribution using an interferometric method. Exps. Fluids 31, 5662.
Choo, Y. J. & Kang, B. S. 2002 The velocity distribution of the liquid sheet formed by two low-speed impinging jets. Phys. Fluids 14, 622627.
Craik, A., Lathman, R., Fawkes, M. & Gibbon, P. 1981 The circular hydraulic jump. J. Fluid. Mech. 112, 347362.
Elbanna, H. & Sabbagh, J. A. 1989 Flow visualization and measurements in a two-dimensional two-impinging-jet flow. AIAA J. 27, 420426.
Ellegaard, C., Hansen, A. E., Hanning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1998 Creating corners in kitchen sinks. Nature 392, 767768.
Ellegaard, C., Hansen, A. E., Hanning, A., Hansen, K., Marcussen, A., Bohr, T., Hansen, J. L. & Watanabe, S. 1999 Cover illustration: Polygonal hydraulic jumps. Nonlinearity 12, 17.
Gilbert, B. 1989 Turbulence measurements in a radial upwash. AIAA J. 27, 4451.
Godwin, R. 1993 The hydraulic jump (“shocks” and viscous flow in the kitchen sink). Am. J. Phys. 61, 829832.
Hamed, M. S. & Akmal, M. 2005 Determination of heat transfer rates in an industry-like spray quench system using multiple impinging water jets. Intl J. Materials Product Technol. 24, 184198.
Hansen, S. H., Horlúck, S., Zauner, D., Dimon, P., Ellegaard, P. & Watanabe, S. 1997 Geometrical orbits of surface waves from a circular hydraulic jump. Phy. Rev. E 55, 70487061.
Hasson, D. & Peck, R. E. 1964 Thickness distribution in a sheet formed by impinging jets. AIChE J. 10, 752754.
Hill, W. G. Jr. 1985 Effects of a central fence on upwash flows. J. Aircraft 22, 771775.
Hill, W. G. Jr. & Jenkins, R. C. 1980 Effect of nozzle spacing on ground interference forces for a two-jet V/STOL aircraft. J. Aircraft 17, 684689.
Higuera, F. J. 1994 Hydraulic jump in a viscous laminar flow. J. Fluid Mech. 274, 6992.
Higuera, F. J. 1997 The circular hydraulic jump. Phys. Fluids 9, 14761478.
Ishigai, S., Nakanishi, S., Mizunao, M. & Imamura, T. 1977 Heat transfer of the impinging round water jet in the interference zone of film flowing along the wall. Bull. JSME 20, 8592.
Kate, R. P., Das, P. K. & Chakraborty, S. 2007 a Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal plate. J. Fluid Mech 573, 247263.
Kate, R. P., Das, P. K. & Chakraborty, S. 2007 b Hydraulic jumps with corners due to obliquely inclined circular liquid jets. Phys. Rev. E 75, 056310-1–056310-6.
Kind, R. J. & Suthanthiran, K. 1972 The interaction of two opposing plane turbulent wall jets. AIAA Paper 72-211.
LienhardV, J. H. V, J. H. 2006 Heat transfer by impingement of circular free-surface liquid jets. 18th National and 17th ISHMT-ASME Conference IIT Guwahati, India, pp. k206–k221.
Liu, X. & LienhardV, J. H. V, J. H. 1993 a Extremely high heat fluxes beneath impinging jets. J. Heat Transfer 115, 472476.
Liu, X. & LienhardV, J. H. V, J. H. 1993 b The hydraulic jump in circular jet impingement and in other thin. liquid films. Exps. Fluids 15, 108116.
Miller, P. 1995 A study of wall jets resulting from single and multiple inclined jet impingement Aeronaut. J. 32, 201216.
Nakoryakov, V., Pokusaev, B. & Troyan, E. 1978 Impingement of an axisymmetric liquid jet on a barrier Intl J. Heat Mass Transfer 21, 11751184.
Olsson, R. G. & Turkdogan, E. T. 1966 Radial spread of a liquid stream on a horizontal plate. Nature 211, 813816.
Rao, A. & Arakeri, J. H. 1998 Integral analysis applied to radial film flows. Intl J. Heat Mass Transfer 41, 27572767.
Rubel, A. 1981 Computations of the oblique impingement of round jets upon a plane wall. AIAA J. 19, 863871.
Rubel, A. 1982 Oblique impingement of a round jet on plane surface. AIAA J. 20, 17561758.
Saripalli, K. R. 1983 Visualization of multijet impingement flow. AIAA J. 21, 483484.
Siclari, M. J., Aidala, P., Wohllebe, F. & Palcza, J. L. 1977 Development of prediction techniques for multi-jet thermal ground flow field and fountain formation. AIAA Paper 77-616.
Siclari, M. J., Hill, W. G. Jr. & Jenkins, R. C. 1981 Stagnation line and upwash formation of two impinging jets. AIAA J. 19, 12861293.
Siclari, M. J., Migdal, D. & Luzzi, T. W. Jr. 1976 Development of theoretical models for jet-induced effects on V/STOL aircraft. J. Aircraft 13, 938944.
Skifstad, J. G. 1970 Aerodynamics of jets pertinent to VTOL aircraft. J. Aircraft 7, 193204.
Sparrow, E. M. & Lovell, B. J. 1980 Heat transfer characteristics of an obliquely impinging circular jet. Trans. ASME: J. Heat Transfer 102, 202209.
Stevens, J. & Webb, B. W. 1991 The effect of inclination on local heat transfer under an axisymmetric free liquid jet. 34, 12271236.
Taylor, G. I. 1960 Formation of thin flat sheets of water. Proc. R. Soc. Lond. 259, 117.
Thielen, L., Jonker, H. J. J. & Hanjalic, K. 2003 Symmetry breaking of flow and heat transfer in multiple impinging jets Intl J. Heat Mass Transfer 24, 444453.
Tong, A. Y. 2003 On the oblique impingement heat transfer of an oblique free surface plane jet. J. Heat Mass Transfer 46, 20772085.
Watson, E. J. 1964 The spread of a liquid jet over a horizontal plane. J. Fluid Mech. 20, 481499.
Yokoi, K. & Xiao, F. 2002 Mechanism of structure formation in circular hydraulic jumps: Numerical studies of strongly deformed free-surface shallow flows. Physica D 161, 202219.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed