Skip to main content Accessibility help

An experimental and computational study of the post-collisional flow induced by an impulsively rotated sphere

  • Sophie A. W. Calabretto (a1), James P. Denier (a1) and Benjamin Levy (a2)


The unsteady flow due to a sphere, immersed in a quiescent fluid, and suddenly rotated, is a paradigm for the development of unsteady boundary layers and their collision. Such a collision arises when the boundary layers on the surface of the sphere are advected towards the equator, where they collide, serving to generate a radial jet. We present the first particle image velocimetry measurements of this collision process, the resulting starting vortex and development of the radial jet. Coupled with new computations, we demonstrate that the post-collision steady flow detaches smoothly from the sphere’s surface, in qualitative agreement with the analysis of Stewartson (Grenzschichtforschung/Boundary Layer Research (ed. H. Görtler), Springer, 1958, pp. 60–70), with no evidence of a recirculation zone, contrary to the conjectured structure of Smith & Duck (Q. J. Mech. Appl. Maths, vol. 20, 1977, pp. 143–156).


Corresponding author

Email addresses for correspondence:,


Hide All

Formerly affiliated with Department of Engineering Science, University of Auckland, New Zealand.



Hide All
Alciatore, D.2018 Pool and Billiards balls: physical characteristics of pool balls. Available at:
Banks, W. H. H. 1965 The boundary layer on a rotating sphere. Q. J. Mech. Appl. Maths 18, 443454.
Banks, W. H. H. 1976 The laminar boundary layer on a rotating sphere. Acta Mech. 24, 273287.
Banks, W. H. H. & Zaturska, M. B. 1979 The collision of unsteady laminar boundary layers. J. Engng Maths 13, 193212.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Blackburn, H. M. & Sherwin, S. J. 2004 Formulation of a Galerkin spectral element-Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197, 759778.
Boirin, O., Deplano, V. & Pelissier, R. 2006 Experimental and numerical studies on the starting effect on the secondary flow in a bend. J. Fluid Mech. 574, 109129.
Bowden, F. P. & Harbour, P. J. 1966 The aerodynamic resistance to a sphere rotating at high Mach numbers in the rarefied transition regime. Proc. R. Soc. Lond. A 293, 156168.
Bowden, F. P. & Lord, R. G. 1963 The aerodynamic resistance to a sphere rotating at high speed. Proc. R. Soc. Lond. A 271, 143153.
Calabretto, S. A. W. & Denier, J. P. 2019 Instabilities in the flow around an impulsively rotated sphere. Phys. Rev. Fluids 4, 073904.
Calabretto, S. A. W., Levy, B., Denier, J. P. & Mattner, T. W. 2015a The unsteady flow due to an impulsively rotated sphere. Proc. R. Soc. Lond. A 471, 20150299.
Calabretto, S. A. W., Mattner, T. W. & Denier, J. P. 2015b The effect of seam imperfections on the unsteady flow within a fluid-fllled torus. J. Fluid Mech. 767, 240253.
Cowley, S. J., van Dommelen, L. L. & Lam, S. T. 1990 On the use of Lagrangian variables in descriptions of unsteady boundary-layer separation. Phil. Trans. R. Soc. Lond. A 333, 343378.
Dennis, S. C. R. & Duck, P. W. 1988 Unsteady flow due to an impulsively started rotating sphere. Comput. Fluids 16, 291310.
van Dommelen, L. L. 1990 On the Lagrangian description of unsteady boundary-layer separation. Part 2. The spinning sphere. J. Fluid Mech. 210, 627645.
Floryan, J. M. 1986 Görtler instability of boundary-layers over concave and convex walls. Phys. Fluids 29, 23802387.
Garret, S. J. & Peake, N. 2002 The stability and transition of the boundary layer on a rotating sphere. J. Fluid Mech. 456, 199218.
Hada, T. & Ito, A. 2003 Visualization of breakdown process of vortex flows formed around a rotating sphere. Trans. Vis. Soc. Japan 23, 231234.
Howarth, L. 1951 Note on the boundary layer on a rotating sphere. Phil. Mag. 42, 13081315.
Kluwick, A. & Wohlfahrt, H. 1986 Hot-wire-anemometer study of the entry flow in a curved duct. J. Fluid Mech. 165, 335353.
Kohama, Y. & Kobayashi, R. 1983 Boundary-layer transition and the behaviour of spiral vortices on rotating spheres. J. Fluid Mech. 137, 153164.
Kreith, F., Roberts, L. G., Sullivan, J. A. & Sinha, S. N. 1963 Convection heat transfer and flow phenomena of rotating spheres. Intl J. Heat Mass Transfer 6, 881895.
Lingwood, R. J. 1996 An experimental study of absolute instability of the rotating-disk boundary-layer flow. J. Fluid Mech. 314, 373405.
Riley, N. 1998 Unsteady fully-developed flow in a curved pipe. J. Engng Maths 34, 131141.
Simpson, C. J. & Stewartson, K. 1982 A note on a boundary-layer collision on a rotating sphere. Z. Angew. Math. Phys. 33, 370378.
Smith, F. T. & Duck, P. W. 1977 Separation of jets or thermal boundary layers from a wall. Q. J. Mech. Appl. Maths 20, 143156.
Stewartson, K. 1958 On rotating laminar boundary layers. In Grenzschichtforschung/Boundary Layer Research (ed. Görtler, H.), pp. 6070. Springer.
Stewartson, K., Cebeci, T. & Chang, K. C. 1980 A boundary-layer collision in a curved duct. Q. J. Mech. Appl. Maths 33, 5975.
Thomas, C. & Davies, C. 2018 On the impulse response and global instability development of the infinite rotating-disc boundary layer. J. Fluid Mech. 857, 239269.
Wadey, P. 1992 On the development of Görtler vortices in wall jet flow. J. Engng Maths 26, 297313.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

An experimental and computational study of the post-collisional flow induced by an impulsively rotated sphere

  • Sophie A. W. Calabretto (a1), James P. Denier (a1) and Benjamin Levy (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.