Skip to main content Accessibility help

An exact Riemann-solver-based solution for regular shock refraction

  • P. DELMONT (a1) (a2), R. KEPPENS (a1) (a2) (a3) (a4) and B. VAN DER HOLST (a5)


We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest. When the shock impinges on the density discontinuity, it refracts, and in the hydrodynamical case three signals arise. Regular refraction means that these signals meet at a single point, called the triple point. After reflection from the top wall, the contact discontinuity becomes unstable due to local Kelvin–Helmholtz instability, causing the contact surface to roll up and develop the Richtmyer–Meshkov instability (RMI). We present an exact Riemann-solver-based solution strategy to describe the initial self-similar refraction phase, by which we can quantify the vorticity deposited on the contact interface. We investigate the effect of a perpendicular magnetic field and quantify how its addition increases the deposition of vorticity on the contact interface slightly under constant Atwood number. We predict wave-pattern transitions, in agreement with experiments, von Neumann shock refraction theory and numerical simulations performed with the grid-adaptive code AMRVAC. These simulations also describe the later phase of the RMI.


Corresponding author

Email address for correspondence:


Hide All
Abd-El-Fattah, A. M. & Henderson, L. F. 1978 a Shock waves at a fast–slow gas interface. J. Fluid Mech. 86, 1532.
Abd-El-Fattah, A. M. & Henderson, L. F. 1978 b Shock waves at a slow–fast gas interface. J. Fluid Mech. 89, 7995.
Barmin, A. A., Kulikovskiy, A. G. & Pogorelov, N. V. 1996 Shock-capturing approach and nonevolutionary solutions in magnetohydrodynamics. J. Comput. Phys. 126, 7790.
Brio, M. & Wu, C. C. 1988 An upwind differencing scheme for the equations of ideal magnetohydrodynamics. J. Comput. Phys. 75, 400422.
Chao, J. K., Lyu, L. H., Wu, B. H., Lazarus, A. J., Chang, T. S. & Lepping, R. P. 1993 Observation of an intermediate shock in interplanetary space. J. Geophys. Res. 98, 1744317450.
Chu, C. K. & Taussig, R. T. 1967 Numerical experiments of magnetohydrodynamic shocks and the stability of switch-on shocks. Phys. Fluids 10, 249256.
De Sterck, H., Low, B. C. & Poedts, S. 1998 Complex magnetohydrodynamic bow shock topology in field-aligned low-β flow around a perfectly conducting cylinder. Phys. Plasmas 11, 40154027.
Falle, S. A. E. G. & Komissarov, S. S. 1997 On the existence of intermediate shocks. Mon. Not. R. Astron. Soc. 123, 265277.
Falle, S. A. E. G. & Komissarov, S. S. 2001 On the inadmissibility of non-evolutionary shocks. J. Plasma Phys. 65, 2958.
Feng, H. & Wang, J. M. 2008 Observations of a 2 → 3 type interplanetary intermediate shock. Solar Phys. 247, 195201.
Goedbloed, H. & Poedts, S. 2004 Principles of Magnetohydrodynamics with Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press
Hawley, J. F. & Zabusky, N. J. 1989 Vortex paradigm for shock-accelerated density-stratified interfaces. Phys. Rev. Lett. 63, 12411245.
Henderson, R. F. 1966 The refraction of a plane shock wave at a gas interface. J. Fluid Mech. 26, 607637.
Henderson, R. F. 1991 On the refraction of shock waves at a slow–fast gas interface. J. Fluid Mech. 224, 127.
van der Holst, B., & Keppens, R. 2007 Hybrid block-AMR in Cartesian and curvilinear coordinates: MHD applications. J. Comput. Phys. 26, 925946.
Jahn, R. G. 1956 The refraction of shock waves at a gaseous interface. J. Comput. Phys. 1, 457489.
Keppens, R., Nool, M., Tóth, G. & Goedbloed, H. 2003 Adaptive mesh refinement for conservative systems: multi-dimensional efficiency evaluation. J. Comput. Phys. 153, 317339.
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-Th. & Müller, E. 2006 Nonspherical core collapse supernovae. Astron. Astrophys. 453, 661678.
Lax, P. D. 1957 Hyperbolic system of conservation laws. Part 2. Comm. Pure Appl. Math. 10, 537566.
Meshkov, E. E. 1969 Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn. 4, 101104.
Mulder, W., Osher, S. & Sethian, J. A. 1992 Computing interface motion in compressible gas dynamics. J. Comput. Phys. 100, 209228.
Myong, R. S. & Roe, P. L. 1997 a Shock waves and rarefaction waves in magnetohydrodynamics. Part 1. A model system. J. Plasma Phys. 58, 485.
Myong, R. S. & Roe, P. L. 1997 b Shock waves and rarefaction waves in magnetohydrodynamics. Part 2. The MHD system. J. Plasma Phys. 58, 521.
von Neumann, J. 1963 Collected Works, vol. 6. Permagon.
Nouragliev, R. R., Sushchikh, S. Y., Dinh, T. N. & Theofanous, T. G. 2005 Shock wave refraction patterns at interfaces. Intl J. Multiphase Flow 31, 969995.
Oron, D., Sadot, O., Srebro, Y., Rikanati, A., Yedvab, Y., Alon, U., Erez, L., Erez, G., Bendor, G., Levin, L. A., Ofer, D. & Shvarts, D. 1999 Studies in the nonlinear evolution of the Rayleigh–Taylor and Richtmyer–Meshkov instabilities and their role in inertial confinement fusion. Laser Part. Beams 17, 465475.
Richtmyer, R. D. 1960 Taylor instability in shock acceleration of compressible fluids. Comm. Pure Appl. Math. 13, 297319.
Samtaney, R. 2003 Suppression of the Richtmyer–Meshkov instability in the presence of a magnetic field. Phys. Fluids 15, L53L56.
Samtaney, R., Ray, J. & Zabusky, N. J. 1998 Baroclinic circulation generation on shock accelerated slow/fast gas interfaces. Phys. Fluids 10, 12171230.
Sturtevant, B. 1987 Shock Tubes and Waves. VCH Verlag.
Taub, A. H. 1947 Refraction of plane shock waves. Phys. Review 72, 5159.
Todd, L. 1965 Evolution of switch-on and switch-off shocks in a gas of finite electrical conductivity. J. Fluid Mech. 24, 597608.
Toro, E. F. 1999 Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer.
Tóth, G. & Odstrčil, D. 1996 Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems. J. Comput. Phys. 128 (1), 82100.
Wheatley, V., Pullin, D. I. & Samtaney, R. 2005 Regular shock refraction at an oblique planar density interface in magnetohydrodynamics. J. Fluid Mech. 552, 179217.
Yee, H. C. 1989 A class of high-resolution explicit and implicit shock-capturing methods. Tech Rep. TM101088. NASA.
MathJax is a JavaScript display engine for mathematics. For more information see

An exact Riemann-solver-based solution for regular shock refraction

  • P. DELMONT (a1) (a2), R. KEPPENS (a1) (a2) (a3) (a4) and B. VAN DER HOLST (a5)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed