Skip to main content Accessibility help

An analytical correction to Amiet’s solution of airfoil leading-edge noise in non-uniform mean flows

  • Siyang Zhong (a1) (a2), Xin Zhang (a1) (a3), Bo Peng (a1) and Xun Huang (a1) (a4)


Gust/turbulence–leading edge interaction is a significant source of airfoil broadband noise. An approach often used to predict the sound is based on Amiet’s flat-plate solution. Analytical studies have been conducted to investigate the influences of airfoil geometries, non-uniform mean flows and turbulence statistics, which, however, were often too convoluted. In this work, the problem is revisited by proposing simple corrections to the standard flat-plate solution to account for the effect of non-uniform mean flows of real airfoils. A key step in the method is to use a new space–time transformation that is analogous to the Prandtl–Glauert transformation to simplify the sound governing equation with spatially varying coefficients to a classical wave equation, which is then solved using the Schwarzschild technique as in Amiet’s solution. The impacts of Mach number, wavenumber and airfoil geometry on the prediction accuracy are investigated for both single-frequency and broadband cases, and the results are compared against high-fidelity simulations. It predicts the sound reduction by the airfoil thickness, and reveals that the reduction is caused by the non-uniform streamwise velocity. The limitations of the model are discussed and the approximation errors are estimated. In general, the prediction error increases with the airfoil thickness, the sound frequency and the flow Mach number. Nevertheless, in all cases studied in this work, the proposed correction can effectively improve the prediction accuracy of the flat-plate solution much more efficiently compared to numerical solutions of the Euler equations using computational aeroacoustics.


Corresponding author

Email addresses for correspondence:,


Hide All
Adamczyk, J. J. 1974 Passage of a swept airfoil through an oblique gust. J. Aircraft 11 (5), 281287.
Amiet, R. K. 1974 Compressibility effects in unsteady thin-airfoil theory. AIAA J. 12 (2), 252255.
Amiet, R. K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41 (4), 407420.
Amiet, R. K. 1976a High frequency thin-airfoil theory for subsonic flow. AIAA J. 14 (8), 10761082.
Amiet, R. K. 1976b Low-frequency approximations in unsteady small perturbation subsonic flows. J. Fluid Mech. 75 (3), 545552.
Amiet, R. K.1989 Noise produced by turbulent flow into a rotor: theory manual for noise calculation. NASA Tech. Rep. 181788.
Amiet, R. K. & Sears, W. R. 1970 The aerodynamic noise of small-perturbation subsonic flows. J. Fluid Mech. 44 (2), 227235.
Ashcroft, G. & Zhang, X. 2003 Optimized prefactored compact schemes. J. Comput. Phys. 190 (2), 459477.
Atassi, H. M. 1984 The sears problem for a lifting airfoil revisited-new results. J. Fluid Mech. 141, 109122.
Atassi, H. M., Dusey, M. & Davis, C. M. 1993a Acoustic radiation from a thin airfoil in non-uniform subsonic flows. AIAA J. 31 (1), 1219.
Atassi, H. M., Fang, J. & Patrick, S. 1993b Direct calculation of sound radiated from bodies in nonuniform flows. Trans. ASME J. Fluids Engng 115 (4), 573579.
Atassi, H. M. & Grzedzinski, J. 1989 Unsteady disturbances of streaming motions around bodies. J. Fluid Mech. 209, 385403.
Atassi, H. M., Subramaniam, S. & Scott, J.1990 Acoustic radiation from lifting airfoils in compressible subsonic flow. AIAA Paper 1990-3991.
Ayton, L. J. 2016 An analytic solution for gust–aerofoil interaction noise including effects of geometry. IMA J. Appl. Maths 82 (2), 280304.
Ayton, L. J. & Chaitanya, P. 2017 Analytical and experimental investigation into the effects of leading-edge radius on gust–aerofoil interaction noise. J. Fluid Mech. 829, 780808.
Ayton, L. J. & Peake, N. 2015 On high-frequency sound generated by gust–aerofoil interaction in shear flow. J. Fluid Mech. 766, 297325.
Ayton, L. J. & Peake, N. 2016 Interaction of turbulence with the leading-edge stagnation point of a thin aerofoil. J. Fluid Mech. 798, 436456.
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.
Batchelor, G. K. & Proudman, I. 1954 The effect of rapid distortion of a fluid in turbulent motion. Q. J. Mech. Appl. Maths 7 (1), 83103.
Blandeau, V. P., Joseph, P. F., Jenkins, G. & Powles, C. J. 2011 Comparison of sound power radiation from isolated airfoils and cascades in a turbulent flow. J. Acoust. Soc. Am. 129 (6), 35213530.
Christophe, J.2011 Application of hybrid methods to high frequency aeroacoustics. PhD thesis, Université libre de Bruxelles.
Christophe, J., Anthoine, J. & Moreau, S. 2009 Amiet’s theory in spanwise-varying flow conditions. AIAA J. 47 (3), 788790.
Crighton, D. G. 1975 Basic principles of aerodynamic noise generation. Prog. Aeronaut. Sci. 16 (1), 3196.
Curle, N. 1955 The influence of solid boundaries upon aerodynamic sound. Proc. R. Soc. Lond. A 231 (1187), 505514.
Devenport, W. J., Staubs, J. K. & Glegg, S. A. L. 2010 Sound radiation from real airfoils in turbulence. J. Sound Vib. 329 (17), 34703483.
Drela, M. 1989 XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils. Springer.
Gea-Aguilera, F., Gill, J. & Zhang, X. 2017 Synthetic turbulence methods for computational aeroacoustic simulations of leading edge noise. Comput. Fluids 157, 240252.
Gea-Aguilera, F., Gill, J., Zhang, X., Chen, X. X. & Nodé-Langlois, T.2016 Leading edge noise predictions using anisotropic synthetic turbulence. AIAA Paper 2016-2840.
Gershfeld, J. 2004 Leading edge noise from thick foils in turbulent flows. J. Acoust. Soc. Am. 116 (3), 14161426.
Gill, J., Zhang, X. & Joseph, P. 2013 Symmetric airfoil geometry effects on leading edge noise. J. Acoust. Soc. Am. 134 (4), 26692680.
Glegg, S. A. L., Baxter, S. M. & Glendinning, A. G. 1987 The prediction of broadband noise from wind turbines. J. Sound Vib. 118 (2), 217239.
Glegg, S. A. L. & Devenport, W. J. 2010 Panel methods for airfoils in turbulent flow. J. Sound Vib. 329 (18), 37093720.
Goldstein, M. E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89 (3), 433468.
Goldstein, M. E. & Atassi, H. M. 1976 A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust. J. Fluid Mech. 74 (4), 741765.
Goodwine, B. 2010 Engineering Differential Equations: Theory and Applications. Springer Science & Business Media.
Guidati, G. & Wagner, S.1999 The influence of airfoil shape on gust–airfoil interaction noise in compressible flows. AIAA Paper 99-1843.
Hall, A. M., Atassi, O. V., Gilson, J. & Reba, R.2011 Effects of leading-edge thickness on high-speed airfoil–turbulence interaction noise. AIAA Paper 2011-2861.
Hu, F. Q., Hussaini, M. Y. & Manthey, J. L. 1996 Low-dissipation and low-dispersion Runge–Kutta schemes for computational acoustics. J. Comput. Phys. 124 (1), 177191.
Hunt, J. C. R. 1973 A theory of turbulent flow round two-dimensional bluff bodies. J. Fluid Mech. 61 (4), 625706.
Kemp, N. H. 1952 On the lift and circulation of airfoils in some unsteady-flow problems. J. Aero. Sci. 19 (10), 713714.
Kerschen, E. J. & Balsa, T. F. 1981 Transformation of the equation governing disturbances of a two-dimensional compressible. AIAA J. 19 (10), 13671370.
Kerschen, E. J. & Myers, M. R. 1987 Perfect gas effects in compressible rapid distortion theory. AIAA J. 25 (3), 504507.
Kraichnan, R. H. 1970 Diffusion by a random velocity field. Phys. Fluids 13 (1), 2231.
Landahl, M. T. 1989 Unsteady Transonic Flow. Cambridge University Press.
Lighthill, M. J. 1956 Drift. J. Fluid Mech. 1 (1), 3153.
Liu, W., Kim, J. W., Zhang, X., Angland, D. & Caruelle, B. 2013 Landing-gear noise prediction using high-order finite difference schemes. J. Sound Vib. 332 (14), 35173534.
Lockard, D. P. & Morris, P. J. 1998 Radiated noise from airfoils in realistic mean flows. AIAA J. 36 (6), 907914.
Lysak, P. D.2011 Unsteady lift of thick airfoils in incompressible turbulent flow. PhD thesis, The Pennsylvania State University.
Ma, Z. K. & Zhang, X. 2009 Numerical investigation of broadband slat noise attenuation with acoustic liner treatment. AIAA J. 47 (12), 28122820.
Magliozzi, B.1991 Propeller and propfan noise. NASA Tech. Rep. 92-10599.
Martinez, R. & Widnall, S. E. 1980 Unified aerodynamic-acoustic theory for a thin rectangular wing encountering a gust. AIAA J. 18 (6), 636645.
Miles, J. W. 1950 On the compressibility correction for subsonic unsteady flow. J. Aero. Sci. 17 (3), 181182.
Miotto, R. F., Wolf, W. R. & de Santana, L. D. 2017 Numerical computation of aeroacoustic transfer functions for realistic airfoils. J. Sound Vib. 407, 253270.
Miotto, R. F., Wolf, W. R. & de Santana, L. D. 2018 Leading-edge noise prediction of general airfoil profiles with spanwise-varying inflow conditions. AIAA J. 56 (5), 17111716.
Moreau, S., Roger, M. & Jurdic, V.2005 Effect of angle of attack and airfoil shape on turbulence-interaction noise. AIAA Paper 2005-2973.
Moriarty, P., Guidati, G. & Migliore, P.2005 Prediction of turbulent inflow and trailing-edge noise for wind turbines. AIAA Paper 2005-2881.
Myers, M. R. & Kerschen, E. J. 1997 Influence of camber on sound generation by airfoils interacting with high-frequency gusts. J. Fluid Mech. 353, 221259.
Node-Langlois, T., Wlassow, F., Languille, V., Colin, Y., Caruelle, B., Gill, J., Chen, X. X., Zhang, X. & Parry, A. B.2014 Prediction of contra-rotating open rotor broadband noise in isolated and installed configurations. AIAA Paper 2014-2610.
Oerlemans, S. & Migliore, P.2004 Aeroacoustic wind tunnel tests of wind turbine airfoils. AIAA Paper 2004-3042.
Olsen, W. & Wagner, J. 1982 Effect of thickness on airfoil surface noise. AIAA J. 20 (3), 437439.
Osborne, C. 1973 Unsteady thin-airfoil theory for subsonic flow. AIAA J. 11, 205209.
Paterson, R. W. & Amiet, R. K. 1977 Noise and surface pressure response of an airfoil to incident turbulence. J. Aircraft 14 (8), 729736.
Richards, S. K., Zhang, X., Chen, X. X. & Nelson, P. A. 2004 The evaluation of non-reflecting boundary conditions for duct acoustic computation. J. Sound Vib. 270 (3), 539557.
Rienstra, S. W. & Hirschberg, A. 2004 An Introduction to Acoustics. p. 278. Eindhoven University of Technology.
Roger, M. & Moreau, S. 2010 Extensions and limitations of analytical airfoil broadband noise models. Intl J. Aeroacoust. 9 (3), 273306.
Santana, L. D., Christophe, J., Schram, C. & Desmet, W. 2016 A rapid distortion theory modified turbulence spectra for semi-analytical airfoil noise prediction. J. Sound Vib. 383, 349363.
Santana, L. D., Schram, C. & Desmet, W.2012 Panel method for turbulence–airfoil interaction noise prediction. AIAA Paper 2012-2073.
Schwarzschild, K. 1901 Die Beugung und Polarisation des Lichts durch einen Spalt. I. Math. Ann. 55 (2), 177247.
Scott, J. & Atassi, H.1990 Numerical solutions of the linearized Euler equations for unsteady vortical flows around lifting airfoils. AIAA Paper 90-0694.
Sears, W. R.1938 A systematic presentation of the theory of thin airfoils in non-uniform motion. PhD thesis, California Institute of Technology.
Sears, W. R. 1941 Some aspects of non-stationary airfoil theory and its practical application. J. Aero. Sci. 8 (3), 104108.
Shen, Z. & Zhang, X.2018 Random-eddy superposition technique for leading edge noise predictions. AIAA Paper 2018-3597.
Staubs, J. K.2008 Real airfoil effects on leading edge noise. PhD thesis, Virginia Polytechnic Institute and State University.
Tsai, C. T.1992 Effect of airfoil thickness on high-frequency gust interaction noise. PhD thesis, The University of Arizona.
von Kármán, T. H. & Sears, W. R. 1938 Airfoil theory for non-uniform motion. J. Aero. Sci. 5 (10), 379390.
Wang, X., Hu, Z. W. & Zhang, X. 2013 Aeroacoustic effects of high-lift wing slat track and cut-out system. Intl J. Aeroacoust. 12 (3), 283308.
Zhang, X., Chen, X. X., Morfey, C. L. & Nelson, P. A. 2004 Computation of spinning modal radiation from an unflanged duct. AIAA J. 42 (9), 17951801.
Zhong, S. Y. & Zhang, X. 2017 A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves. J. Fluid Mech. 820, 424450.
Zhong, S. Y. & Zhang, X. 2018a A generalized sound extrapolation method for turbulent flows. Proc. R. Soc. Lond. A 474 (2210), 20170614.
Zhong, S. Y. & Zhang, X. 2018b On the frequency domain formulation of the generalized sound extrapolation method. J. Acoust. Soc. Am. 144 (24), 2431.
Zhong, S. Y. & Zhang, X. 2019 On the effect of streamwise disturbance on the airfoil–turbulence interaction noise. J. Acoust. Soc. Am. 145 (4), 25302539.
Zhong, S. Y., Zhang, X., Gill, J. & Fattah, R.2017 A numerical investigation of the airfoil–gust interaction noise in transonic flows. AIAA Paper 2017-3369.
Zhong, S. Y., Zhang, X., Gill, J., Fattah, R. & Sun, Y. H. 2018 A numerical investigation of the airfoil–gust interaction noise in transonic flows: acoustic processes. J. Sound Vib. 425, 239256.
Zhong, S. Y., Zhang, X., Gill, J., Fattah, R. & Sun, Y. H. 2019 Geometry effect on the airfoil–gust interaction noise in transonic flows. Aero. Sci. Tech. 92, 181191.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

An analytical correction to Amiet’s solution of airfoil leading-edge noise in non-uniform mean flows

  • Siyang Zhong (a1) (a2), Xin Zhang (a1) (a3), Bo Peng (a1) and Xun Huang (a1) (a4)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.