Skip to main content Accessibility help
×
Home

Almost limiting configurations of steady interfacial overhanging gravity waves

  • Dmitri V. Maklakov (a1) and Ruslan R. Sharipov (a1)

Abstract

We study progressive gravity waves at the interface between two unbounded fluids of different densities. The main concern is to find almost limiting configurations for the so-called overhanging waves. The latter were first computed by Meiron & Saffman (J. Fluid Mech., vol. 129, 1983, pp. 213–218). By means of the Hopf lemma, we rigorously prove that, if $\unicode[STIX]{x1D703}$ is the angle between the tangent line to the interfacial curve and the horizontal direction, then $-\unicode[STIX]{x03C0}<\unicode[STIX]{x1D703}<\unicode[STIX]{x03C0}$ . This inequality allows us to put forward a criterion of proximity of the interface to the limiting configuration, namely, the angle $|\unicode[STIX]{x1D703}|_{max}$ must be close to  $\unicode[STIX]{x03C0}$ but may not exceed $\unicode[STIX]{x03C0}$ . We develop a new numerical method of computing interfacial waves based on the representation of a piecewise-analytic function to be found in such a manner that only the shape of the interface is unknown. All other hydrodynamic quantities can be expressed analytically in terms of functions describing this shape. Using this method, we compute almost limiting configurations of interfacial waves with $|\unicode[STIX]{x1D703}|_{max}>179.98^{\circ }$ . Analysing the results of computations, we introduce two new concepts: an inner crest, and an inner solution near the inner crest. These concepts allow us to make a well-grounded prediction for the shapes of limiting interfacial configurations and confirm Saffman & Yuen’s (J. Fluid Mech., vol. 123, 1982, pp. 459–476) conjecture that the waves are geometrically limited.

Copyright

Corresponding author

Email address for correspondence: dmaklak@kpfu.ru

References

Hide All
Ahlberg, J. H., Nilson, E. N. & Walsh, J. L. 1967 Complex cubic splines. Trans. Am. Math. Soc. 129, 391413.
Ahlberg, J. H., Nilson, E. N. & Walsh, J. L. 1969 Properties of analytic splines (I). Complex polynomial splines. J. Math. Anal. Appl. 27, 262278.
Akers, B. F., Ambrose, D. M., Pond, K. & Wright, J. D. 2016 Overturned internal capillary–gravity waves. Eur. J. Mech. (B/Fluids) 57, 143151.
Amick, C. J., Fraenkel, L. E. & Toland, J. F. 1982 On the Stokes conjecture for the wave of extreme form. Acta Mathematica 148, 193214.
Atkinson, K. 1972 The numerical evaluation of the Cauchy transform on simple closed curves. SIAM J. Numer. Anal. 9 (2), 284299.
Crapper, G. D. 1957 An exact solution for progressive capillary waves of arbitrary amplitude. J. Fluid Mech. 2 (6), 532540.
de Boor, C. 1978 A Practical Guide to Splines. Springer.
Gilbarg, D. & Trudinger, N. S. 2001 Elliptic Partial Differential Equations of Second Order. Springer.
Grimshaw, R. H. J. & Pullin, D. I. 1986 Extreme interfacial waves. Phys. Fluids 29 (9), 28022807.
Holyer, J. Y. 1979 Large amplitude progressive interfacial waves. J. Fluid Mech. 93, 433448.
Lamb, H. 1932 Hydrodynamics, 6th edn. Cambridge University Press.
Levi-Civita, T. 1925 Détermination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann. 93, 264314.
Longuet-Higgins, M. S. & Fox, M. J. H. 1977 Theory of the almost-highest wave: the inner solution. J. Fluid Mech. 80, 721741.
Longuet-Higgins, M. S. & Fox, M. J. H. 1978 Theory of the almost-highest wave. Part 2. Matching and analytical extension. J. Fluid Mech. 85, 769786.
Longuet-Higgins, M. S. & Fox, M. J. H. 1996 Asymptotic theory for the almost-highest solitary wave. J. Fluid Mech. 317, 119.
Lu, J.-K. 1993 Boundary Value Problems for Analytic Functions. World Scientific.
Maklakov, D. V. 2002 Almost highest gravity waves on water of finite depth. Eur. J. Appl. Maths 13, 6793.
Meiron, D. I. & Saffman, P. G. 1983 Overhanging interfacial gravity waves of large amplitude. J. Fluid Mech. 129, 213218.
Muskheleshvili, N. I. 1972 Singular Integral Equations. Wolters–Noordhoff.
Pullin, D. I. & Grimshaw, R. 1983a Nonlinear interfacial progressive waves near a boundary in a Boussinesq fluid. Phys. Fluids 27, 897905.
Pullin, D. I. & Grimshaw, R. 1983b Interfacial progressive gravity waves in a two-layer shear flow. Phys. Fluids 26, 17311739.
Saffman, P. G. & Yuen, H. C. 1982 Finite-amplitude interfacial waves in the presence of a current. J. Fluid Mech. 123, 459476.
Schwartz, L. W. 1974 Computer extension and analytic continuation of Stokes expansion for gravity waves. J. Fluid Mech. 62, 553578.
Turner, R. E. L. & Vanden-Broeck, J.-M. 1986 The limiting configuration of interfacial gravity waves. Phys. Fluids 29 (2), 372375.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Almost limiting configurations of steady interfacial overhanging gravity waves

  • Dmitri V. Maklakov (a1) and Ruslan R. Sharipov (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed