Skip to main content Accessibility help

Air-induced inverse Chladni patterns

  • Henk Jan van Gerner (a1) (a2), Ko van der Weele (a3), Martin A. van der Hoef (a1) (a4) and Devaraj van der Meer (a1)


When very light particles are sprinkled on a resonating horizontal plate, inverse Chladni patterns are formed. Instead of going to the nodal lines of the plate, where they would form a standard Chladni pattern, the particles are dragged to the antinodes by the air currents induced by the vibration of the plate. Here we present a detailed picture of the mechanism using numerical simulations involving both the particles and the air. Surprisingly, the time-averaged Eulerian velocity, commonly used in these type of problems, does not explain the motion of the particles: it even has the opposite direction, towards the nodal lines. The key to the inverse Chladni patterning is found in the averaged velocity of a tracer particle moving along with the air: this Lagrangian velocity, averaged over a vibration cycle, is directed toward the antinodes. The Chladni plate thus provides a unique example of a system in which the Eulerian and Lagrangian velocities point in opposite directions.


Corresponding author

Email address for correspondence:


Hide All
1. Açikalin, T., Raman, A. & Garimella, S. V. 2003 Two-dimensional streaming flows induced by resonating, thin beams. J. Acoust. Soc. Am. 114, 1785.
2. Banerjee, S. & Law, S. E. 1998 Characterization of chargeability of biological particulates by triboelectrification. IEEE Trans. Indust. Appl. 34, 1201.
3. Beetstra, R., van der Hoef, M. A. & Kuipers, J. A. M. 2007 Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres. AIChE J. 53, 489.
4. Boluriaan, S. & Morris, P. J. 2003 Acoustic streaming: from Rayleigh to today. Intl J. Aeroacoust. 2, 255.
5. Brenner, H. 1961 The slow motion of a sphere through a viscous fluid towards a plane surface. Chem. Engng Sci. 16, 242.
6. Chladni, E. F. F. 1802 Die Akustik. Breitkopf & Härtel.
7. Chladni, E. F. F. 1809 Traité d’Acoustique. Courcier.
8. Deen, N. G., van Sint-Annaland, M. & Kuipers, J. A. M. 2004 Multi-scale modelling of dispersed gas–liquid two-phase flows. Chem. Engng Sci. 59, 1853.
9. Dorrestijn, M., Bietsch, A., Açikalin, T., Raman, A., Hegnerand, M., Meyer, E. & Gerber, CH. 2007 Chladni figures revisited based on nanomechanics. Phys. Rev. Lett. 98, 026102.
10. Elghobashi, S. 1994 On predicting particle-laden turbulent flows. Appl. Sci. Res. 52, 309.
11. Ergun, S. 1954 Fluid flow through packed columns. Chem. Engng Prog. 48, 89.
12. Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299.
13. van Gerner, H. J. 2009 Newton versus Stokes: competing forces in granular matter. PhD thesis, Enschede,
14. Goldman, A. J., Cox, R. G. & Brenner, H. 1967 Slow viscous motion of a sphere parallel to a plane wall – I Motion through a quiescent fluid. Chem. Engng Sci. 22, 637.
15. Hamilton, M. F., Ilinskii, Y. A. & Zabolotskaya, E. A. 2003 Acoustic streaming generated by standing waves in two-dimensional channels of arbitrary width. J. Acoust. Soc. Am. 113, 153.
16. van der Hoef, M. A., Ye, M., van Sint Annaland, M., Andrews IV, A. T., Sundaresan, S. & Kuipers, J. A. M. 2006 Multi-scale modelling of gas-fluidized beds. Adv. Chem. Engng 31, 65.
17. van der Hoef, M. A., van Sint Annaland, M., Deen, N. G. & Kuipers, J. A. M. 2008 Numerical simulation of dense gas–solid fluidized beds: a multiscale modelling strategy. Ann. Rev. Fluid Mech. 40, 47.
18. Lighthill, J. 1978 Acoustic streaming. J. Sound Vib. 61, 391.
19. Loh, B.-G., Hyun, S., Ro, P. I. & Kleinstreuer, C. 2002 Acoustic streaming induced by ultrasonic flexural vibrations and associated enhancement of convective heat transfer. J. Acoust. Soc. Am. 111, 875.
20. Maxey, M. & Riley, J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883.
21. Nyborg, W. L. 1953 Acoustic streaming due to attenuated plane waves. J. Acoust. Soc. Am. 25, 68.
22. Peskin, C. S. 2002 The immersed boundary method. Acta Numerica 11, 480.
23. Pope, S. B. 2000 Turbulent Flows. Cambridge University Press.
24. Rayleigh, L. 1884 On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems. Phil. Trans. R. Soc. Lond. 125, 1.
25. Rayleigh, L. 1894 The Theory of Sound, vol. I. Macmillan.
26. Riley, N. 2001 Steady streaming. Annu. Rev. Fluid Mech. 33, 43.
27. Savage, S. B. 1988 Streaming motions in a bed of vibrationally fluidized dry granular material. J. Fluid Mech. 194, 457.
28. Stöckmann, H.-J. 2006 Ein Nomade der Wissenschaft. Physik J. 5, 47.
29. Stöckmann, H.-J. 2007 Chladni meets Napoleon. Eur. Phys. J. Special Topics 145, 15.
30. Stokes, G. G. 1847 On the theory of oscillatory waves. Camb. Phil. Soc. Trans. 8, 441.
31. Uhlmann, M. 2005 An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209, 448.
32. Waller, M. D. 1955 Air circulations about a vibrating plate. Br. J. Appl. Phys. 6, 347.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Air-induced inverse Chladni patterns

  • Henk Jan van Gerner (a1) (a2), Ko van der Weele (a3), Martin A. van der Hoef (a1) (a4) and Devaraj van der Meer (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed