Skip to main content Accessibility help

Aerodynamics of planar counterflowing jets

  • A. D. Weiss (a1), W. Coenen (a1) and A. L. Sánchez (a1)


The planar laminar flow resulting from the impingement of two gaseous jets of different density issuing into an open space from aligned steadily fed slot nozzles of semi-width $H$ separated by a distance $2L$ is investigated by numerical and analytical methods. Specific consideration is given to the high Reynolds and low Mach number conditions typically present in counterflow-flame experiments, for which the flow is nearly inviscid and incompressible. It is shown that introduction of a density-weighted vorticity–streamfunction formulation effectively reduces the problem to one involving two jets of equal density, thereby removing the vortex-sheet character of the interface separating the two jet streams. Besides the geometric parameter $L/H$ , the solution depends only on the shape of the velocity profiles in the feed streams and on the jet momentum-flux ratio. While conformal mapping can be used to determine the potential solution corresponding to uniform velocity profiles, numerical integration is required in general to compute rotational flows, including those arising with Poiseuille velocity profiles, with simplified solutions found in the limits $L/H\ll 1$ and $L/H\gg 1$ . The results are used to quantify the near-stagnation-point region, of interest in counterflow-flame studies, including the local value of the strain rate as well as the curvature of the separating interface and the variations of the strain rate away from the stagnation point.


Corresponding author

Email address for correspondence:


Hide All
Bergthorson, J. M., Sone, K., Mattner, T. W., Dimotakis, P. E., Goodwin, D. G. & Meiron, D. I. 2005 Impinging laminar jets at moderate Reynolds numbers and separation distances. Phys. Rev. E 72, 066307.
Birkhoff, G. & Zarantonello, E. H. 1957 Jets, Wakes and Cavities. Academic.
Carpio, J., Liñán, A., Sánchez, A. L. & Williams, F. A. 2017 Aerodynamics of axisymmetric counterflowing jets. Combust. Flame 177, 137143.
Cha, M. S. & Ronney, P. D. 2006 Propagation rates of nonpremixed edge flames. Combust. Flame 146, 312328.
Denshchikov, V. A., Kondrat’ev, V. N. & Romashov, A. N. 1978 Interaction between two opposed jets. Fluid Dyn. 13, 924926.
Denshchikov, V. A., Kondrat’Ev, V. N., Romashov, A. N. & Chubarov, V. M. 1983 Auto-oscillations of planar colliding jets. Fluid Dyn. 18, 460462.
Gardon, R. & Akfirat, J. C. 1966 Heat transfer characteristics of impinging two-dimensional air jets. Trans. ASME J. Heat Transfer 88, 101107.
Gupta, V., Safvi, S. A. & Mountziaris, T. J. 1996 Gas-phase decomposition kinetics in a wall-less environment using a counterflow jet reactor: design and feasibility studies. Ind. Engng Chem. Res. 35, 32483255.
Gurevich, M. I. 1966 The Theory of Jets in an Ideal Fluid. Pergamon.
Hecht, F. 2012 New development in FreeFem++. J. Numer. Math. 20, 251265.
Hosseinalipour, S. M. & Mujumdar, A. S. 1997a Flow and thermal characteristics of steady two dimensional confined laminar opposing jets: part I. Equal jets. Intl Commun. Heat Mass Transfer 24, 2738.
Hosseinalipour, S. M. & Mujumdar, A. S. 1997b Flow and thermal characteristics of steady two dimensional confined laminar opposing jets: part II. Unequal jets. Intl Commun. Heat Mass Transfer 24, 3950.
Kim, J., Libby, P. A. & Williams, F. A. 1993 On the displacement effects of laminar flames. Combust. Sci. Technol. 87, 125.
Levey, H. C. 1960 The back effect of a wall on a jet. Z. Angew. Math. Phys. 11, 152157.
Li, W. F., Huang, G. F., Tu, G. Y., Liu, H. F. & Wang, F. C. 2013 Experimental study of planar opposed jets with acoustic excitation. Phys. Fluids 25, 014108.
Li, W. F., Yao, T. L., Liu, H. F. & Wang, F. C. 2011 Experimental investigation of flow regimes of axisymmetric and planar opposed jets. AIChE J. 57, 14341445.
Liñán, A., Vera, M. & Sánchez, A. L. 2015 Ignition, liftoff, and extinction of gaseous diffusion flames. Annu. Rev. Fluid Mech. 47, 293314.
Liu, J.-B. & Ronney, P. D. 1999 Premixed edge-flames in spatially-varying straining flows. Combust. Sci. Technol. 144, 2145.
Martin, H. 1977 Heat and mass transfer between impinging gas jets and solid surfaces. Adv. Heat Transfer 13, 160.
Milne-Thomson, L. M. 1968 Theoretical Hydrodynamics. Macmillan.
Moreno-Boza, D., Coenen, W., Sevilla, A., Carpio, J. & Sánchez, A. L. 2016 Diffusion-flame flickering as a hydrodynamic global mode. J. Fluid Mech. 798, 9971014.
Niemann, U., Seshadri, K. & Williams, F. A. 2015 Accuracies of laminar counterflow flame experiments. Combust. Flame 162, 15401549.
Pawlowski, R. P., Salinger, A. G., Shadid, J. N. & Mountziaris, T. J. 2006 Bifurcation and stability analysis of laminar isothermal counterflowing jets. J. Fluid Mech. 551, 117139.
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.
Phares, D. J., Smedley, G. T. & Flagan, R. C. 2000a The inviscid impingement of a jet with arbitrary velocity profile. Phys. Fluids 12, 20462055.
Phares, D. J., Smedley, G. T. & Flagan, R. C. 2000b The wall shear stress produced by the normal impingement of a jet on a flat surface. J. Fluid Mech. 418, 351375.
Renner, C. B. & Doyle, P. S. 2015 Stretching self-entangled DNA molecules in elongational fields. Soft Matt. 11, 31053114.
Revuelta, A., Sánchez, A. L. & Liñán, A. 2002 The virtual origin as a first-order correction for the far-field description of laminar jets. Phys. Fluids 14, 18211824.
Rubel, A. 1980 Computations of jet impingement on a flat surface. AIAA J. 18, 168175.
Scribano, G. & Bisetti, F. 2016 Reynolds number and geometry effects in laminar axisymmetric isothermal counterflows. Phys. Fluids 28, 123605.
Shay, M. L. & Ronney, P. D. 1998 Nonpremixed edge flames in spatially varying straining flows. Combust. Flame 112, 171180.
Song, H. S., Wang, P., Boles, R. S., Matinyan, D., Prahanphap, H., Piotrowicz, J. & Ronney, P. D. 2017 Effects of mixture fraction on edge-flame propagation speeds. Proc. Combust. Inst. 36, 14031409.
Strand, T. 1962 Inviscid-incompressible-flow theory of static two-dimensional solid jets in proximity to the ground. J. Aero. Sci. 29, 170173.
Tamir, A. 1994 Impinging Streams Reactors: Fundamentals and Applications. Elsevier.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Related content

Powered by UNSILO

Aerodynamics of planar counterflowing jets

  • A. D. Weiss (a1), W. Coenen (a1) and A. L. Sánchez (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.