Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-23T19:20:20.312Z Has data issue: false hasContentIssue false

Adjoint-based linear sensitivity of a supersonic boundary layer to steady wall blowing–suction/heating–cooling

Published online by Cambridge University Press:  05 January 2024

Arthur Poulain*
Affiliation:
DAAA, ONERA, Université Paris Saclay, F-92190 Meudon, France
Cédric Content
Affiliation:
DAAA, ONERA, Université Paris Saclay, F-92190 Meudon, France
Georgios Rigas
Affiliation:
Department of Aeronautics, Imperial College London, London SW7 2AZ, UK
Eric Garnier
Affiliation:
DAAA, ONERA, Université Paris Saclay, F-92190 Meudon, France
Denis Sipp
Affiliation:
DAAA, ONERA, Université Paris Saclay, F-92190 Meudon, France
*
Email address for correspondence: arthur.poulain@onera.fr

Abstract

For a Mach $4.5$ flat-plate adiabatic boundary layer, we study the sensitivity of the first, second Mack modes and streaks to steady wall-normal blowing/suction and wall heat flux. The global instabilities are characterised in frequency space with resolvent gains and their gradients with respect to wall-boundary conditions are derived through a Lagrangian-based method. The implementation is performed in the open-source high-order finite-volume code BROADCAST and algorithmic differentiation is used to access the high-order state derivatives of the discretised governing equations. For the second Mack mode, the resolvent optimal gain decreases when suction is applied upstream of Fedorov's mode $S$/mode $F$ synchronisation point, leading to stabilisation, and the converse when applied downstream. The largest suction gradient is in the region of branch I of mode $S$ neutral curve. For heat-flux control, strong heating at the leading edge stabilises both the first and second Mack modes, the former being more sensitive to wall-temperature control. Streaks are less sensitive to any boundary control in comparison with the Mack modes. Eventually, we show that an optimal actuator consisting of a single steady heating strip located close to the leading edge manages to damp the linear growth of all three instability mechanisms.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airiau, C., Bottaro, A., Walther, S. & Legendre, D. 2003 A methodology for optimal laminar flow control: application to the damping of Tollmien–Schlichting waves in a boundary layer. Phys. Fluids 15 (5), 11311145.CrossRefGoogle Scholar
Amestoy, P., Duff, I., L'Excellent, J.-Y. & Koster, J. 2001 A fully asynchronous multifrontal solver using distributed dynamic scheduling. SIAM J. Matrix. Anal. Applics. 23 (1), 1541.CrossRefGoogle Scholar
Balakumar, P. & Hall, P. 1999 Optimum suction distribution for transition control. Theor. Comput. Fluid Dyn. 13 (1), 119.CrossRefGoogle Scholar
Balay, S., et al. 2019 PETSc users manual. ANL-95/11.Google Scholar
Barbagallo, A., Dergham, G., Sipp, D., Schmid, P.J. & Robinet, J.-C. 2012 Closed-loop control of unsteadiness over a rounded backward-facing step. J. Fluid Mech. 703, 326362.CrossRefGoogle Scholar
Batista, A. & Kuehl, J. 2020 Local wall temperature effects on the second-mode instability. J. Spacecr. Rockets 57 (3), 580595.CrossRefGoogle Scholar
Boujo, E. 2021 Second-order adjoint-based sensitivity for hydrodynamic stability and control. J. Fluid Mech. 920, A12.CrossRefGoogle Scholar
Brandt, L., Sipp, D., Pralits, J. & Marquet, O. 2011 Effect of base-flow variation in noise amplifiers: the flat-plate boundary layer. J. Fluid Mech. 687, 503528.CrossRefGoogle Scholar
Bugeat, B., Chassaing, J.-C., Robinet, J.-C. & Sagaut, P. 2019 3D global optimal forcing and response of the supersonic boundary layer. J. Comput. Phys. 398, 108888.CrossRefGoogle Scholar
Chanteux, X., Bégou, G., Deniau, H. & Vermeersch, O. 2022 Construction and application of transition prediction databased method for 2nd mode on sharp cone. AIAA AVIATION 2022 Forum.CrossRefGoogle Scholar
Chu, B.-T. 1965 On the energy transfer to small disturbances in fluid flow (Part I). Acta Mechanica 1 (3), 215234.CrossRefGoogle Scholar
Cinnella, P. & Content, C. 2016 High-order implicit residual smoothing time scheme for direct and large eddy simulations of compressible flows. J. Comput. Phys. 326, 129.CrossRefGoogle Scholar
Crivellini, A. & Bassi, F. 2011 An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations. Comput. Fluids 50 (1), 8193.CrossRefGoogle Scholar
Dalcin, L., Paz, R., Kler, P. & Cosimo, A. 2011 Parallel distributed computing using Python. Adv. Water Resour. 34 (9), 11241139.CrossRefGoogle Scholar
Fedorov, A. & Khokhlov, A. 2002 Receptivity of hypersonic boundary layer to wall disturbances. Theor. Comput. Fluid Dyn. 15 (4), 231254.CrossRefGoogle Scholar
Fedorov, A., Ryzhov, A., Soudakov, V. & Utyuzhnikov, S. 2014 Numerical simulation of the effect of local volume energy supply on high-speed boundary layer stability. Comput. Fluids 100, 130137.CrossRefGoogle Scholar
Fedorov, A. & Tumin, A. 2011 High-speed boundary-layer instability: old terminology and a new framework. AIAA J. 49 (8), 16471657.CrossRefGoogle Scholar
Fong, K.D., Wang, X. & Zhong, X. 2014 Numerical simulation of roughness effect on the stability of a hypersonic boundary layer. Comput. Fluids 96, 350367.CrossRefGoogle Scholar
Gaster, M. 1974 On the effects of boundary-layer growth on flow stability. J. Fluid Mech. 66 (3), 465480.CrossRefGoogle Scholar
George, K.J. & Sujith, R.I. 2011 On Chu's disturbance energy. J. Sound Vib. 330 (22), 52805291.CrossRefGoogle Scholar
Guo, P., Gao, Z., Jiang, C. & Lee, C.-H. 2021 Sensitivity analysis on supersonic-boundary-layer stability subject to perturbation of flow parameters. Phys. Fluids 33 (8), 084111.CrossRefGoogle Scholar
Hanifi, A., Schmid, P. & Henningson, D. 1996 Transient growth in compressible boundary layer flow. Phys. Fluids 8 (3), 826837.CrossRefGoogle Scholar
Hascoet, L. & Pascual, V. 2013 The tapenade automatic differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. 39 (3), 143.CrossRefGoogle Scholar
Hernández, V., Román, J., Tomás, A. & Vidal, V. 2007 Krylov–Schur methods in SLEPc. Universitat Politecnica de Valencia. Tech. Rep. STR-7.Google Scholar
Huang, Z. & Wu, X. 2016 The effect of local steady suction on the stability and transition of boundary layer on a flat plate. In 8th AIAA Flow Control Conference, p. 3471.Google Scholar
Huerre, P. & Monkewitz, P.A. 1990 Local and global instabilities in spatially developing flows. Annu. Rev. Fluid Mech. 22 (1), 473537.CrossRefGoogle Scholar
Joslin, R. 1998 Overview of laminar flow control. NASA Tech. Rep. TP-1998-20705.Google Scholar
Kazakov, A., Kogan, M. & Kuparev, V. 1995 Optimization of laminar-turbulent transition delay by means of local heating of the surface. Fluid Dyn. 30 (4), 563570.CrossRefGoogle Scholar
Ma, Y. & Zhong, X. 2003 Receptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J. Fluid Mech. 488, 3178.CrossRefGoogle Scholar
Mack, L. 1963 The inviscid stability of the compressible laminar boundary layer. Space Prog. Summary 37, 23.Google Scholar
Mack, L. 1993 Effect of cooling on boundary-layer stability at Mach number 3. In Instabilities and Turbulence in Engineering Flows (ed. D.E. Ashpis, T.B. Gatski & R. Hirsh), pp. 175–188. Springer.CrossRefGoogle Scholar
Malik, M. 1989 Prediction and control of transition in supersonic and hypersonic boundary layers. AIAA J. 27 (11), 14871493.CrossRefGoogle Scholar
Marquet, O., Sipp, D. & Jacquin, L. 2008 Sensitivity analysis and passive control of cylinder flow. J. Fluid Mech. 615, 221252.CrossRefGoogle Scholar
Martínez-Cava, A. 2019 Direct and adjoint methods for highly detached flows. PhD thesis, Espacio.Google Scholar
Martinez-Cava, A., Chávez-Modena, M., Valero, E., de Vicente, J. & Ferrer, E. 2020 Sensitivity gradients of surface geometry modifications based on stability analysis of compressible flows. Phys. Rev. Fluids 5 (6), 063902.CrossRefGoogle Scholar
Masad, J. 1995 Transition in flow over heat-transfer strips. Phys. Fluids 7 (9), 21632174.CrossRefGoogle Scholar
Masad, J. & Abid, R. 1995 On transition in supersonic and hypersonic boundary layers. Intl J. Engng Sci. 33 (13), 18931919.CrossRefGoogle Scholar
McKeon, B.J. & Sharma, A.S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.CrossRefGoogle Scholar
Mettot, C. 2013 Linear stability, sensitivity, and passive control of turbulent flows using finite differences. PhD thesis, Palaiseau, Ecole polytechnique.Google Scholar
Mettot, C., Renac, F. & Sipp, D. 2014 Computation of eigenvalue sensitivity to base flow modifications in a discrete framework: application to open-loop control. J. Comput. Phys. 269, 234258.CrossRefGoogle Scholar
Miró Miró, F. & Pinna, F. 2018 Effect of uneven wall blowing on hypersonic boundary-layer stability and transition. Phys. Fluids 30 (8), 084106.CrossRefGoogle Scholar
Morkovin, M. 1994 Transition in open flow systems-a reassessment. Bull. Am. Phys. Soc. 39, 1882.Google Scholar
Nibourel, P., Leclercq, C., Demourant, F., Garnier, E. & Sipp, D. 2023 Reactive control of second mack mode in a supersonic boundary layer with free-stream velocity/density variations. J. Fluid Mech. 954, A20.CrossRefGoogle Scholar
Oz, F., Goebel, T.E., Jewell, J.S. & Kara, K. 2023 Local wall cooling effects on hypersonic boundary-layer stability. J. Spacecr. Rockets 60 (2), 412426.CrossRefGoogle Scholar
Park, J. & Zaki, T. 2019 Sensitivity of high-speed boundary-layer stability to base-flow distortion. J. Fluid Mech. 859, 476515.CrossRefGoogle Scholar
Poinsot, T. & Lele, S. 1992 Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101 (1), 104129.CrossRefGoogle Scholar
Poulain, A., Content, C., Sipp, D., Rigas, G. & Garnier, E. 2023 Broadcast: a high-order compressible CFD toolbox for stability and sensitivity using algorithmic differentiation. Comput. Phys. Commun. 283, 108557.CrossRefGoogle Scholar
Pralits, J., Airiau, C., Hanifi, A. & Henningson, D. 2000 Sensitivity analysis using adjoint parabolized stability equations for compressible flows. Flow Turbul. Combust. 65 (3), 321346.CrossRefGoogle Scholar
Pralits, J., Hanifi, A. & Henningson, D. 2002 Adjoint-based optimization of steady suction for disturbance control in incompressible flows. J. Fluid Mech. 467, 129161.CrossRefGoogle Scholar
Reed, H. & Nayfeh, A. 1986 Numerical-perturbation technique for stability of flat-plate boundary layers with suction. AIAA J. 24 (2), 208214.CrossRefGoogle Scholar
Reynolds, G. & Saric, W. 1986 Experiments on the stability of the flat-plate boundary layer with suction. AIAA J. 24 (2), 202207.CrossRefGoogle Scholar
Rigas, G., Sipp, D. & Colonius, T. 2021 Nonlinear input/output analysis: application to boundary layer transition. J. Fluid Mech. 911, A15.CrossRefGoogle Scholar
Roman, J., Campos, C., Romero, E. & Tomás, A. 2015 SLEPc users manual. D. Sistemes Informàtics i Computació Universitat Politècnica de València, Valencia, Spain, Rep. No. DSIC-II/24/02.Google Scholar
Saint-James, J. 2020 Prévision de la transition laminaire-turbulent dans le code elsa. extension de la méthode des paraboles aux parois chauffées. PhD thesis, Institut Supérieur de l'Aéronautique et de l'Espace (ISAE).Google Scholar
Schmid, P.J., Henningson, D.S. & Jankowski, D.F. 2002 Stability and Transition in Shear Flows. Applied Mathematical Sciences, Appl. Mech. Rev. 142, B57B59.CrossRefGoogle Scholar
Sciacovelli, L., Passiatore, D., Cinnella, P. & Pascazio, G. 2021 Assessment of a high-order shock-capturing central-difference scheme for hypersonic turbulent flow simulations. Comput. Fluids 230, 105134.CrossRefGoogle Scholar
Shen, Y., Zha, G. & Chen, X. 2009 High order conservative differencing for viscous terms and the application to vortex-induced vibration flows. J. Comput. Phys. 228 (22), 82838300.CrossRefGoogle Scholar
Sidorenko, A., Gromyko, Y., Bountin, D., Polivanov, P. & Maslov, A. 2015 Effect of the local wall cooling/heating on the hypersonic boundary layer stability and transition. Prog. Flight Phys. 7, 549568.CrossRefGoogle Scholar
Sipp, D. & Marquet, O. 2013 Characterization of noise amplifiers with global singular modes: the case of the leading-edge flat-plate boundary layer. Theor. Comput. Fluid Dyn. 27 (5), 617635.CrossRefGoogle Scholar
Soudakov, V., Fedorov, A. & Egorov, I. 2015 Stability of high-speed boundary layer on a sharp cone with localized wall heating or cooling. Prog. Flight Phys. 7, 569584.CrossRefGoogle Scholar
Stuckert, G., Lin, N. & Herbert, T. 1995 Nonparallel effects in hypersonic boundary layer stability. In 33rd Aerospace Sciences Meeting and Exhibit, p. 776.Google Scholar
Sutherland, W. 1893 LII. The viscosity of gases and molecular force. Lond. Edinb. Dublin Philos. Mag. J. Sci. 36 (223), 507531.CrossRefGoogle Scholar
Towne, A., Rigas, G., Kamal, O., Pickering, E. & Colonius, T. 2022 Efficient global resolvent analysis via the One-Way Navier–Stokes equations. J. Fluid Mech. 948, A9.CrossRefGoogle Scholar
Walther, S., Airiau, C. & Bottaro, A. 2001 Optimal control of Tollmien–Schlichting waves in a developing boundary layer. Phys. Fluids 13 (7), 20872096.CrossRefGoogle Scholar
Wang, X. & Zhong, X. 2009 Effect of wall perturbations on the receptivity of a hypersonic boundary layer. Phys. Fluids 21 (4), 044101.CrossRefGoogle Scholar
Wang, X., Zhong, X. & Ma, Y. 2011 Response of a hypersonic boundary layer to wall blowing-suction. AIAA J. 49 (7), 13361353.CrossRefGoogle Scholar
Wang, Y., Ferrer, E., Martínez-Cava, A., Zheng, Y. & Valero, E. 2019 Enhanced stability of flows through contraction channels: combining shape optimization and linear stability analysis. Phys. Fluids 31 (7), 074109.CrossRefGoogle Scholar
Zhao, R., Wen, C., Tian, X., Long, T. & Yuan, W. 2018 Numerical simulation of local wall heating and cooling effect on the stability of a hypersonic boundary layer. Intl J. Heat Mass Transfer 121, 986998.CrossRefGoogle Scholar
Zuccher, S., Luchini, P. & Bottaro, A. 2004 Algebraic growth in a Blasius boundary layer: optimal and robust control by mean suction in the nonlinear regime. J. Fluid Mech. 513, 135160.CrossRefGoogle Scholar