Skip to main content Accessibility help
×
Home

Acoustic–convective mode conversion in an aerofoil cascade

  • P. PALIES (a1), D. DUROX (a1), T. SCHULLER (a1) and S. CANDEL (a1) (a2)

Abstract

When an acoustic wave impinges on an aerofoil cascade, a convective vorticity mode is generated giving rise to transverse velocity perturbations. This mode conversion process is investigated to explain the flow dynamics observed when swirlers are submitted to incident acoustic disturbances. The phenomenon is first studied in the case of a two-dimensional aerofoil cascade using a model derived from an actuator disk theory. The model is simplified to deal with low-Mach-number flows. The velocity field on the downstream side of the cascade features two components, an axial perturbation associated with the transmitted acoustic wave and a transverse disturbance corresponding to the vorticity wave generated at the cascade trailing edge. The model provides the amplitude of both components and defines their phase shift. Numerical simulations are carried out in a second stage to validate this model in the case of a cascade operating at a low Reynolds number Rec = 2700 based on the chord length. Space–time diagrams of velocity perturbations deduced from these simulations are used to retrieve the two types of modes. Experiments are then carried out in the case of an axial swirler placed in a cylindrical duct and submitted to plane acoustic waves emitted on the upstream side of the swirler. The amplitude and phase of the two velocity components measured in the axial and azimuthal directions are found to be in good agreement with theoretical estimates and with numerical calculations. This analysis is motivated by combustion dynamics observed in flames stabilized by aerodynamic swirlers in continuous combustors.

Copyright

Corresponding author

Email address for correspondence: paul.palies@em2c.ecp.fr

References

Hide All
Baillot, F., Durox, D. & Prudhomme, R. 1992 Experimental and theoretical study of a premixed vibrating flame. Combust. Flame 88 (2), 149168.
Bake, F., Richter, C., Muhlbauer, B., Kings, N., Rohle, I., Thiele, F. & Noll, B. 2009 The entropy wave generator (EWG): a reference case on entropy noise. J. Sound Vib. 326, 574598.
Birbaud, A. L., Durox, D. & Candel, S. 2006 Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations. Combust. Flame 146 (3), 541552.
Birbaud, A. L., Durox, D., Ducruix, S. & Candel, S. 2007 Dynamics of free jets submitted to upstream acoustic modulations. Phys. Fluids 19 (1), 013602.
Bourhela, A. & Baillot, F. 1998 Appearance and stability of a laminar conical premixed flame subjected to an acoustic perturbation. Combust. Flame 114 (3), 303318.
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82 (1), 5165.
Candel, S. M. 1972 Analytical studies of some acoustical problems of jet engines. PhD thesis, California Institute of Technology, Pasadena, CA.
Crow, S. C. & Champagne, F. H. 1971 Orderly structure in jet turbulence. J. Fluid Mech. 48 (3), 547591.
Cumpsty, N. A. 1979 Jet engines combustion noise : pressure, entropy and vorticity perturbations produced by unsteady combustion or heat addition. J. Sound Vib. 66 (4), 527544.
Cumpsty, N. A. & Marble, F. E. 1977 a The interaction of entropy fluctuations with turbine blade rows; a mechanism of turbojet engine noise. Proc. R. Soc. Lond. Ser. A357, 323344.
Cumpsty, N. A. & Marble, F. E. 1977 b Core noise gas turbine exhausts. J. Sound Vib. 54 (2), 297309.
De Soete, G. 1964 Etude des flammes vibrantes – application a la combustion turbulente. Revue de l'Institut Francais du Pétrole et Annales du Combustible Liquide XIX (6), 766785.
Dotson, K. W., Koshigoe, S. & Pace, K. K. 1997 Vortex shedding in a large solid rocket motor without inhibitors at the segmented interfaces. J. Propul. Power 13, 197206.
Ffwocs-Williams, J. E. & Howe, M. S. 1975 The generation of sound by density inhomogeneities in low Mach number nozzle flows. J. Fluid Mech. 70, 605622.
Glegg, S. A. L. 1999 The response of a swept blade row to a three-dimensional gust. J. Sound Vib. 227 (1), 2964.
Greitzer, E. M., Tan, C. S. & Graf, M. B. 2004 Internal Flow – Concepts and Applications. Cambridge University Press.
Hirsch, C., Fanaca, D., Reddy, P., Polifke, W. & Sattelmayer, T. 2005 Influence of the swirler design on the flame transfer function of premixed flames. In ASME Paper GT2005-68195, ASME Turbo Expo 2005, Reno-Tahoe, NV, ASME.
Horlock, J. H. 1978 Actuator Disk Theory – Discontinuities in Thermo-Fluid Dynamics. McGraw-Hill International Book Co.
Howe, M. S. 1975 Contributions to the theory of aerodynamic sound, with application to excess jet noise and the theory of the flute. J. Fluid Mech. 71 (4), 625673.
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293384.
Kaji, S. & Okazaki, T. 1970 Propagation of sound waves through a blade row. Part I. Analysis based on semi-actuator disk theory. J. Sound Vib. 11 (3), 339353.
Koch, W. 1971 On the transmission of sound waves through a blade row. J. Sound Vib. 18 (1), 111128.
Komarek, T. & Polifke, W. 2010 Impact of swirl fluctuations on the flame response of a perfectly premixed swirl burner. J. Engng Gas Turbines Power 132 (061053).
Kornilov, V. N., Schreel, K. R. A. M. & de Goey, L. P. H. 2007 Experimental assessment of the acoustic response of laminar premixed Bunsen flames. Proc. Combust. Inst. 31, 12391246.
Leyko, M., Nicoud, F. & Poinsot, T. 2009 Comparison of direct and indirect combustion noise mechanisms in a model combustor. AIAA J. 47 (11), 27092716.
Marble, F. E. & Candel, S. M. 1977 Acoustic disturbance from gas nonuniformities convected through a nozzle. J. Sound Vib. 55, 225243.
Morfey, C. L. 1973 a Amplification of aerodynamic noise by convected flow inhomogeneities. J. Sound Vib. 31 (4), 391397.
Morfey, C. L. 1973 b Rotating blades and aerodynamic sound. J. Sound Vib. 28 (3), 587617.
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2009 Mode conversion in acoustically modulated confined jets. AIAA J. 47 (9), 20532062.
Palies, P., Durox, D., Schuller, T. & Candel, S. 2010 a The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157 (9), 16981717.
Palies, P., Durox, D., Schuller, T., Morenton, P. & Candel, S. 2009 Dynamics of premixed confined swirling flames. Comptes Rendus Mecanique 337 (6–7), 395405.
Palies, P., Schuller, T., Durox, D., Gicquel, L. Y. M. & Candel, S. 2011 Acoustically perturbed turbulent premixed swirling flames. Phys. Fluids (in press).
Paynter, G. C. 1997 Response of two dimensional cascade to an upstream disturbance. AIAA J. 35 (3), 434440.
Peake, N. & Kerschen, E. J. 1997 Influence of mean loading on noise generated by the interaction of gusts with a flat-plate cascade: upstream radiation. J. Fluid Mech. 347, 315346.
Rockwell, D. & Naudascher, E. 1979 Self-sustained oscillation of impinging free shear layers. Annu. Rev. Fluid Mech. 11, 6794.
Rossiter, J. E. 1964 Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Tech. Rep. Aeronautical Research Council, Ministry of Aviation, London.
Sajben, M. & Said, H. 2001 Acoustic-wave/blade-row interactions establish boundary conditions for unsteady inlet flows. J. Propul. Power 17 (5), 10901099.
Schonfeld, T. & Rudgyard, M. 1999 Steady and unsteady flows simulations using the hybrid flow solver avbp. AIAA J. 37 (11), 13781385.
Schuller, T., Durox, D. & Candel, S. 2003 A unified model for the prediction of laminar flame transfer functions: comparisons between conical and v-flame dynamics. Combust. Flame 134 (1–2), 2134.
Selle, L., Benoit, L., Poinsot, T., Nicoud, F. & Krebs, W. 2006 Joint use of compressible large-eddy simulation and Helmholtz solvers for the analysis of rotating modes in an industrial swirled burner. Combust. Flame 145, 194205.
Shanbhogue, S. J., Shin, D. H., Santosh, H., Plaks, D. & Lieuwen, T. 2009 Flame sheet dynamics of bluff body stabilized flames during longitudinal acoustic forcing. Proc. Combust. Inst. 32 (2), 17861893.
Staffelbach, G., Gicquel, L. Y. M., Boudier, G. & Poinsot, T. 2009 Large eddy simulation of self excited azimuthal modes in annular combustors. Proc. Combust. Inst. 32, 29092916.
Wang, S. & Yang, V. 2005 Unsteady flow evolution in swirl injector with radial entry. Part II. External excitations. Phys. Fluids 17 (045107).
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

JFM classification

Related content

Powered by UNSILO

Acoustic–convective mode conversion in an aerofoil cascade

  • P. PALIES (a1), D. DUROX (a1), T. SCHULLER (a1) and S. CANDEL (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.