Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-22T01:47:45.143Z Has data issue: false hasContentIssue false

Accelerated Stokesian Dynamics simulations

Published online by Cambridge University Press:  26 November 2001

ASIMINA SIEROU
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
JOHN F. BRADY
Affiliation:
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA

Abstract

A new implementation of the conventional Stokesian Dynamics (SD) algorithm, called accelerated Stokesian Dynamics (ASD), is presented. The equations governing the motion of N particles suspended in a viscous fluid at low particle Reynolds number are solved accurately and efficiently, including all hydrodynamic interactions, but with a significantly lower computational cost of O(N ln N). The main differences from the conventional SD method lie in the calculation of the many-body long-range interactions, where the Ewald-summed wave-space contribution is calculated as a Fourier transform sum and in the iterative inversion of the now sparse resistance matrix. The new method is applied to problems in the rheology of both structured and random suspensions, and accurate results are obtained with much larger numbers of particles. With access to larger N, the high-frequency dynamic viscosities and short-time self-diffusivities of random suspensions for volume fractions above the freezing point are now studied. The ASD method opens up an entire new class of suspension problems that can be investigated, including particles of non-spherical shape and a distribution of sizes, and the method can readily be extended to other low-Reynolds-number-flow problems.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
Supplementary material: PDF

SIEROU and BRADY supplementary material

Supplementary Material

Download SIEROU and BRADY supplementary material(PDF)
PDF 684.3 KB