Skip to main content Accessibility help

Absence of singular stretching of interacting vortex filaments

  • Sahand Hormoz (a1) and Michael P. Brenner (a1)


A promising mechanism for generating a finite-time singularity in the incompressible Euler equations is the stretching of vortex filaments. Here, we argue that interacting vortex filaments cannot generate a singularity by analysing the asymptotic dynamics of their collapse. We use the separation of the dynamics of the filament shape, from that of its core, to derive constraints that must be satisfied for a singular solution to remain self-consistent uniformly in time. Our only assumption is that the length scales characterizing filament shape obey scaling laws set by the dimension of circulation as the singularity is approached. The core radius necessarily evolves on a different length scale. We show that a self-similar ansatz for the filament shapes cannot induce singular stretching, due to the logarithmic prefactor in the self-interaction term for the filaments. More generally, there is an antagonistic relationship between the stretching rate of the filaments and the requirement that the radius of curvature of filament shape obeys the dimensional scaling laws. This suggests that it is unlikely that solutions in which the core radii vanish sufficiently fast to maintain the filament approximation exist.


Corresponding author

Email address for correspondence:


Hide All
1. Aref, H. 1979 Motion of three vortices. Phys. Fluids 22, 393400.
2. Beale, J., Kato, T. & Majda, A. 1984 Remarks on the breakdown of smooth solutions for the 3-D Euler equations. Commun. Math. Phys. 94, 6166.
3. Chae, D. 2007 Nonexistence of self-similar singularities for the 3d incompressible Euler equations. Commun. Math. Phys. 273, 203215.
4. Chae, D. 2010 On the generalized self-similar singularities for the Euler and the Navier–Stokes equations. J. Funct. Anal. 258, 28652883.
5. Childress, S. 2008 Growth of anti-parallel vorticity in Euler flows. Physica D: Nonlinear Phenomena 237, 19211925.
6. Constantin, P. 2008 Singular, weak and absent: solutions of the Euler equations. Physica D: Nonlinear Phenomena 237, 19261931.
7. Constantin, P., Fefferman, C. & Majda, A. 1996 Geometric constraints on potentially singular solutions for the 3-D Euler equations. Commun. Part. Diff. Equ. 21, 559571.
8. Deng, J., Hou, T. & Yu, X. 2006 Improved geometric conditions for non-blowup of the 3D incompressible Euler equation. Commun. Part. Diff. Equ. 31, 293306.
9. Eggers, J. & Fontelos, A. 2009 The role of self-similarity in singularities of partial differential equations. Nonlinearity 22, R1R44.
10. Gibbon, J. 2008 The three-dimensional Euler equations: Where do we stand? Physica D: Nonlinear Phenomena 237, 18941904.
11. Goldstein, R. E. & Langer, S. 1995 Nonlinear dynamics of stiff polymers. Phys. Rev. Lett. 75, 10941097.
12. Gutierrez, S., Rivas, J. & Vega, L. 2003 Formation of singularities and self-similar vortex motion under the localized induction approximation. Commun. Part. Diff. Equ. 28, 927968.
13. Hou, T. Y. & Li, R. 2006 Dynamic depletion of vortex stretching and non-blowup of the 3-D incompressible Euler equations. J. Nonlinear Sci. 16, 639664.
14. Kerr, R. 1993 Evidence for a singularity of the three-dimensional, incompressible Euler equations. Phys. Fluids A: Fluid Dynamics 5, 17251746.
15. Kimura, Y. 2010 Self-similar collapse of 2D and 3D vortex filament models. Theor. Comput. Fluid Dyn. 24, 389394.
16. Klein, R. & Majda, A. 1993 An asymptotic theory for the nonlinear instability of antiparallel pairs of vortex filaments. Phys. Fluids A: Fluid Dynamics 5, 369379.
17. Klein, R., Majda, A. & Damodaran, K. 1995 Simplified equations for the interaction of nearly parallel vortex filaments. J. Fluid Mech. 288, 201248.
18. Leray, J. 1934 On the motion of a viscous liquid filling space. Acta Mathematica 63, 193248.
19. Majda, A. & Bertozzi, A. L. 2001 Vorticity and Incompressible Flow. Cambridge University Press.
20. Meiron, D., Orszag, S., Nickel, B., Morf, R. & Frisch, U. 1983 Small-scale structure of the Taylor–Green vortex. J. Fluid Mech. 130, 411452.
21. Moffatt, H. 2000 The interaction of skewed vortex pairs: a model for blow-up of the Navier–Stokes equations. J. Fluid Mech. 49, 5168.
22. Morf, R., Orszag, S. & Frisch, U. 1980 Spontaneous singularity in three-dimensional inviscid, incompressible flow. Phys. Rev. Lett. 44, 572575.
23. Nakayama, K., Segur, H. & Wadati, M. 1992 Integrability and the motion of curves. Phys. Rev. Lett. 69, 26032606.
24. Paoletti, M. S., Fisher, M. E. & Lathrop, D. P. 2010 Reconnection dynamics for quantized vortices. Physica D: Nonlinear Phenomena 239, 13671377.
25. Paoletti, M. S., Fisher, M. E., Sreenivasan, K. R. & Lathrop, D. P. 2008 Velocity statistics distinguish quantum turbulence from classical turbulence. Phys. Rev. Lett. 101, 154501.
26. Pelz, R. 1997 Locally self-similar, finite-time collapse in a high-symmetry vortex filament model. Phys. Rev. 55, 16171626.
27. Pomeau, Y. & Sciamarella, D. 2005 An unfinished tale of nonlinear PDEs: Do solutions of 3D incompressible Euler equations blow-up in finite time? Physica D: Nonlinear Phenomena 205, 215221.
28. Pumir, A., Shraiman, B. I. & Siggia, E. 1992 Vortex morphology and Kelvin’s theorem. Phys. Rev. 45, R5351R5354.
29. Pumir, A. & Siggia, E. 1987 Vortex dynamics and the existence of solutions to the Navier–Stokes equations. Phys. Fluids 30, 16061626.
30. Pumir, A. & Siggia, E. 1990 Collapsing solutions to the 3-D Euler equations. Phys. Fluids A: Fluid Dynamics 2, 220241.
31. Saffman, P. G. 1992 Vortex Dynamics. Cambridge University Press.
32. Saffman, P. & Baker, G. 1979 Vortex interactions. Annu. Rev. Fluid Mech. 11, 95122.
33. Schwarz, K. W. 1985 Three-dimensional vortex dynamics in superfluid : line–line and line–boundary interactions. Phys. Rev. 31, 57825804.
34. Siggia, E. 1985 Collapse and amplification of a vortex filament. Phys. Fluids 28, 794805.
35. Taylor, G. & Green, A. 1937 Mechanism of the production of small eddies from large ones. Proc. R. Soc. Lond. 158, 499521.
36. de Waele, A. & Aarts, R. 1994 Route to vortex reconnection. Phys. Rev. Lett. 72, 482485.
MathJax is a JavaScript display engine for mathematics. For more information see

JFM classification

Type Description Title
Supplementary materials

Hormoz and Brenner
Supporting information

 PDF (296 KB)
296 KB

Absence of singular stretching of interacting vortex filaments

  • Sahand Hormoz (a1) and Michael P. Brenner (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed