Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s5ss2 Total loading time: 1.174 Render date: 2021-03-06T14:48:14.858Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Weakly nonlinear analysis of wind-driven gravity waves

Published online by Cambridge University Press:  01 March 2004

ALEXANDROS ALEXAKIS
Affiliation:
Department of Physics, University of Chicago, Chicago, IL 60637, USA
YUAN-NAN YOUNG
Affiliation:
Department of Engineering Sciences & Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA
ROBERT ROSNER
Affiliation:
Department of Physics, University of Chicago, Chicago, IL 60637, USA Department of Astronomy & Astrophysics, University of Chicago, Chicago, IL 60637, USA

Abstract

We study the weakly nonlinear development of shear-driven gravity waves induced by the physical mechanism first proposed by Miles, and furthermore investigate the mixing properties of the finite-amplitude solutions. Linear theory predicts that gravity waves are amplified by an influx of energy through the critical layer, where the velocity of the wind equals the wave phase velocity. As the wave becomes of finite amplitude nonlinearities have to be taken into account. In this paper we derive asymptotic solutions of finite-amplitude waves for weak wind and strong gravitation $U^2 \ll gl$, applicable to many astrophysical scenarios. Because of the presence of a critical layer, ordinary weakly nonlinear methods fail; in this paper, we use rescaling at the critical layer and matched asymptotics to derive the amplitude equations for the most unstable wave, under the assumption that the physical domain is periodic. These amplitude equations are compared with the equations derived by Reutov for the small-density-ratio case (applicable to oceanography); and after numerically integrating these equations, we also analytically derive their quasi-steady limit. As in other analyses of critical layers in inviscid parallel flow, we find that the initial exponential growth of the amplitude $A$ transitions to an algebraic growth proportional to the viscosity, $A \sim \nu t^{2/3}$. We also find that the weakly nonlinear flow allows superdiffusive particle transport within the critical layer, with an exponent $\sim 3/2$, consistent with Venkataramani's results.

Type
Papers
Copyright
© 2004 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 1
Total number of PDF views: 51 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 6th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Weakly nonlinear analysis of wind-driven gravity waves
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Weakly nonlinear analysis of wind-driven gravity waves
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Weakly nonlinear analysis of wind-driven gravity waves
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *