Skip to main content Accessibility help
×
Home
Hostname: page-component-768dbb666b-prhj4 Total loading time: 0.848 Render date: 2023-02-03T23:36:47.777Z Has data issue: true Feature Flags: { "useRatesEcommerce": false } hasContentIssue true

Vortex patterns in rapidly rotating Rayleigh–Bénard convection under spatial periodic forcing

Published online by Cambridge University Press:  13 October 2022

Shan-Shan Ding
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai 200092, PR China
Hong-Lin Zhang
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai 200092, PR China
Dong-Tian Chen
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai 200092, PR China
Jin-Qiang Zhong*
Affiliation:
School of Physics Science and Engineering, Tongji University, Shanghai 200092, PR China
*
Email address for correspondence: jinqiang@tongji.edu.cn

Abstract

Pattern-forming with externally imposed symmetry is ubiquitous in nature but little studied. We present experimental studies of pattern formation and selection by spatial periodic forcing in rapidly rotating convection. When periodic topographic structures are constructed on the heated boundary, they modulate the local temperature and velocity fields. Symmetric convection patterns in the form of regular vortex lattices are observed near the onset of convection, when the periodicity of the external forcing is set close to the intrinsic vortex spacing. We show that the new patterns arise as a dynamical process of imperfect bifurcation which is well described by a Ginzburg–Landau-like model. We explore the phase diagram of buoyancy strength and periodicity of external forcing to find the optimal experimental settings for which the vortex patterns best match that of the external forcing.

Type
JFM Rapids
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alamaro, M., Michele, J. & Pudov, V. 2006 A preliminary assessment of inducing anthropogenic tropical cyclones using compressible free jets and the potential for hurricane mitigation. J. Weather Modif. 38, 8296.Google Scholar
Bajaj, K.M.S., Liu, J., Naberhuis, B. & Ahlers, G. 1998 Square patterns in Rayleigh–Bénard convection with rotation about a vertical axis. Phys. Rev. Lett. 81, 806809.CrossRefGoogle Scholar
Balme, M. & Greeley, R. 2006 Dust devils on Earth and Mars. Rev. Geophys. 44, RG3003.CrossRefGoogle Scholar
Bodenschatz, E., Pesch, W. & Ahlers, G. 2000 Recent developments in Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 32, 709778.CrossRefGoogle Scholar
Busse, F.H. & Heikes, K.E. 1980 Convection in a rotating layer: a simple case of turbulence. Science 208, 173175.CrossRefGoogle Scholar
Chandrasekhar, S. 1961 Hydrodynamic and Hydromagnetic Stability. Oxford University Press.Google Scholar
Chong, K.L., Shi, J.-Q., Ding, S.-S., Ding, G.-Y., Lu, H.-Y., Zhong, J.-Q. & Xia, K.-Q. 2020 Vortices as Brownian particles in turbulent flows. Sci. Adv. 6, eaaz1110.CrossRefGoogle ScholarPubMed
Coullet, P. 1986 Commensurate-incommensurate transition in nonequilibrium systems. Phys. Rev. Lett. 56, 724727.CrossRefGoogle ScholarPubMed
Cross, M.C. 1980 Derivation of the amplitude equation at the Rayleigh–Bénard instability. Phys. Fluids 23, 17271731.CrossRefGoogle Scholar
Cross, M.C. & Hohenberg, P.C. 1993 Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 8511112.CrossRefGoogle Scholar
Ding, S.-S., Chong, K.L., Shi, J.-Q., Ding, G.-Y., Lu, H.-Y., Xia, K.-Q. & Zhong, J.-Q. 2021 Inverse centrifugal effect induced by collective motion of vortices in rotating turbulent convection. Nat. Commun. 12, 5585.CrossRefGoogle Scholar
Gascard, J.-C., Watson, A.J., Messias, M.-J., Olsson, K.A., Johannessen, T. & Simonsen, K. 2002 Long-lived vortices as a mode of deep ventilation in the greenland sea. Nature 416, 525527.CrossRefGoogle ScholarPubMed
Goldstein, H.F., Knobloch, E. & Silber, M. 1992 Planform selection in rotating convection: hexagonal symmetry. Phys. Rev. A 46, 47554761.CrossRefGoogle ScholarPubMed
Gollub, J.P. & Langer, J.S. 1999 Pattern formation in nonequilibrium physics. Rev. Mod. Phys. 71, 396403.CrossRefGoogle Scholar
Grooms, I., Julien, K., Weiss, J.B. & Knobloch, E. 2010 Model of convective Taylor columns in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 104, 224501.CrossRefGoogle ScholarPubMed
Hu, Y., Ecke, R.E. & Ahlers, G. 1995 Time and length scales in rotating Rayleigh–Bénard convection. Phys. Rev. Lett. 74, 50405043.CrossRefGoogle ScholarPubMed
Hu, Y., Pesch, W., Ahlers, G. & Ecke, R.E. 1998 Convection under rotation for Prandtl numbers near 1: Küppers–Lortz instability. Phys. Rev. E 58, 58215833.CrossRefGoogle Scholar
Ismagilov, R.F., Rosmarin, D., Gracias, D.H., Stroock, A.D. & Whitesides, G.M. 2001 Competition of intrinsic and topographically imposed patterns in Bénard-Marangoni convection. Appl. Phys. Lett. 79, 439441.CrossRefGoogle Scholar
Jacobson, M.Z., Archer, C.L. & Kempton, W. 2014 Taming hurricanes with arrays of offshore wind turbines. Nat. Clim. Change 4, 195200.CrossRefGoogle Scholar
Jones, C.A. 2011 Planetary magnetic fields and fluid dynamos. Annu. Rev. Fluid Mech. 43, 583614.CrossRefGoogle Scholar
Julien, K., Legg, S., Mcwilliams, J. & Werne, J. 1999 Plumes in rotating convection. Part 1. Ensemble statistics and dynamical balances. J. Fluid Mech. 391, 151187.CrossRefGoogle Scholar
Kelly, R.E. & Pal, D. 1978 Thermal convection with spatially periodic boundary conditions: resonant wavelength excitation. J. Fluid Mech. 86, 433456.CrossRefGoogle Scholar
King, E.M. & Aurnou, J.M. 2012 Thermal evidence for Taylor columns in turbulent rotating Rayleigh–Bénard convection. Phys. Rev. E 85, 016313.CrossRefGoogle ScholarPubMed
Klima, K., Morgan, M.G., Grossmann, I. & Emanuel, K. 2011 Does it make sense to modify tropical cyclones? A decision-analytic assessment. Environ. Sci. Technol. 45, 42424248.CrossRefGoogle ScholarPubMed
Kuppers, G. & Lortz, D. 1969 Transition from laminar convection to thermal turbulence in a rotating fluid layer. J. Fluid Mech. 35, 609620.CrossRefGoogle Scholar
Latham, J., Parkes, B., Gadian, A. & Salter, S. 2012 Weakening of hurricanes via marine cloud brightening (MCB). Atmos. Sci. Lett. 13, 231237.CrossRefGoogle Scholar
Lowe, M., Gollub, J.P. & Lubensky, T.C. 1983 Commensurate and incommensurate structures in a nonequilibrium system. Phys. Rev. Lett. 51, 786789.CrossRefGoogle Scholar
Martin, S. & Drucker, R. 1997 The effect of possible Taylor columns on the summer ice retreat in the chukchi sea. J. Geophys. Res. Oceans 102, 1047310482.CrossRefGoogle Scholar
Mau, Y., Hagberg, A. & Meron, E. 2012 Spatial periodic forcing can displace patterns it is intended to control. Phys. Rev. Lett. 109, 034102.CrossRefGoogle ScholarPubMed
McCoy, J.H. 2007 Pattern forming system in the presence of different symmetry-breaking mechanisms. PhD thesis, Cornell University, Ithaca, NY.Google Scholar
Murray, J.D. 1989 Mathematical Biology. Springer-Verlag.CrossRefGoogle Scholar
Niiler, P.P. & Bisshopp, F.E. 1965 On the influence of coriolis force on onset of thermal convection. J. Fluid Mech. 22, 753761.CrossRefGoogle Scholar
Noto, D., Tasaka, Y., Yanagisawa, T. & Murai, Y. 2019 Horizontal diffusive motion of columnar vortices in rotating Rayleigh–Bénard convection. J. Fluid Mech. 871, 401426.CrossRefGoogle Scholar
Portegies, J.W., Kunnen, R.P.J., van Heijst, G.J.F. & Molenaar, J. 2008 A model for vortical plumes in rotating convection. Phys. Fluids 20, 066602.CrossRefGoogle Scholar
Roy, C. & Kovordányi, R. 2012 Tropical cyclone track forecasting techniques - a review. Atmos. Res. 104-105, 4069.CrossRefGoogle Scholar
Sakai, S. 1997 The horizontal scale of rotating convection in the geostrophic regime. J. Fluid Mech. 333, 8595.CrossRefGoogle Scholar
Scheel, J.D., Mutyaba, P.L. & Kimmel, T. 2010 Patterns in rotating Rayleigh–Bénard convection at high rotation rates. J. Fluid Mech. 659, 2442.CrossRefGoogle Scholar
Seiden, G., Weiss, S., McCoy, J.H., Pesch, W. & Bodenschatz, E. 2008 Pattern forming system in the presence of different symmetry-breaking mechanisms. Phys. Rev. Lett. 101, 214503.CrossRefGoogle ScholarPubMed
Shi, J.-Q., Lu, H.-Y., Ding, S.-S. & Zhong, J.-Q. 2020 Fine vortex structure and flow transition to the geostrophic regime in rotating Rayleigh–Bénard convection. Phys. Rev. Fluids 5, 011501(R).CrossRefGoogle Scholar
Tian, W. & Parker, D.J. 2003 Observations and numerical simulation of atmospheric cellular convection over mesoscale topography. Mon. Weather Rev. 131, 222235.2.0.CO;2>CrossRefGoogle Scholar
Veronis, G. 1959 Cellular convection with finite amplitude in a rotating fluids. J. Fluid Mech. 5, 401435.CrossRefGoogle Scholar
Weiss, S., Seiden, G. & Bodenschatz, E. 2014 Resonance patterns in spatially forced Rayleigh–Bénard convection. J. Fluid Mech. 756, 293308.CrossRefGoogle Scholar
de Wit, X.M., Aguirre Guzmán, A.J., Madonia, M., Cheng, J.S., Clercx, H.J.H. & Kunnen, R.P.J. 2020 Turbulent rotating convection confined in a slender cylinder: the sidewall circulation. Phys. Rev. Fluids 5, 023502.CrossRefGoogle Scholar
Zaikin, A.N. & Zhabotinskii, A.M. 1970 Concentration wave propagation in a two-dimensional liquid-phase self-oscillating system. Nature 223, 535537.CrossRefGoogle Scholar
Zhang, X., van Gils, D.P.M., Horn, S., Wedi, M., Zwirner, L., Ahlers, G., Ecke, R.E., Weiss, S., Bodenschatz, E. & Shishkina, O. 2020 Boundary zonal flow in rotating turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 124, 084505.CrossRefGoogle ScholarPubMed

Ding et al. Supplementary Movie 1

This supplementary movie is an experimentally recorded video corresponding to Fig. 2a in the manuscript. When played at 6 frames per second, the movie runs at 60 times real speed.

Download Ding et al. Supplementary Movie 1(Video)
Video 24 MB

Ding et al. Supplementary Movie 2

This supplementary movie is an experimentally recorded video corresponding to Fig. 2b in the manuscript. When played at 6 frames per second, the movie runs at 60 times real speed.

Download Ding et al. Supplementary Movie 2(Video)
Video 24 MB

Ding et al. Supplementary Movie 3

This supplementary movie is an experimentally recorded video corresponding to Fig. 2c in the manuscript. When played at 6 frames per second, the movie runs at 60 times real speed.

Download Ding et al. Supplementary Movie 3(Video)
Video 25 MB

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Vortex patterns in rapidly rotating Rayleigh–Bénard convection under spatial periodic forcing
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Vortex patterns in rapidly rotating Rayleigh–Bénard convection under spatial periodic forcing
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Vortex patterns in rapidly rotating Rayleigh–Bénard convection under spatial periodic forcing
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *