Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-bcmtx Total loading time: 0.236 Render date: 2021-04-19T06:52:12.987Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Underwater breathing: the mechanics of plastron respiration

Published online by Cambridge University Press:  11 July 2008

M. R. FLYNN
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA
JOHN W. M. BUSH
Affiliation:
Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA

Abstract

The rough, hairy surfaces of many insects and spiders serve to render them water-repellent; consequently, when submerged, many are able to survive by virtue of a thin air layer trapped along their exteriors. The diffusion of dissolved oxygen from the ambient water may allow this layer to function as a respiratory bubble or ‘plastron’, and so enable certain species to remain underwater indefinitely. Maintenance of the plastron requires that the curvature pressure balance the pressure difference between the plastron and ambient. Moreover, viable plastrons must be of sufficient area to accommodate the interfacial exchange of O2 and CO2 necessary to meet metabolic demands. By coupling the bubble mechanics, surface and gas-phase chemistry, we enumerate criteria for plastron viability and thereby deduce the range of environmental conditions and dive depths over which plastron breathers can survive. The influence of an external flow on plastron breathing is also examined. Dynamic pressure may become significant for respiration in fast-flowing, shallow and well-aerated streams. Moreover, flow effects are generally significant because they sharpen chemical gradients and so enhance mass transfer across the plastron interface. Modelling this process provides a rationale for the ventilation movements documented in the biology literature, whereby arthropods enhance plastron respiration by flapping their limbs or antennae. Biomimetic implications of our results are discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below.

References

Abdelsalam, M. E., Bartlett, P. N., Kelf, T. & Baumberg, J. 2005 Wetting of regularly structured gold surfaces. Langmuir 21, 17531757.CrossRefGoogle ScholarPubMed
Andersen, N. M. 1976 A comparative study of locomotion on the water surface in semiaquatic bugs (Insects, Hemiptera, Gerromorpha). Vidensk. Meddr. Dansk. Naturh. Foren. 139, 337396.Google Scholar
Andersen, N. M. 1977 Fine structure of the body hair layers and morphology of the spiracles of semiaquatic bugs (Insecta, Hemiptera, Gerromorpha) in relation to life on the water surface. Vidensk. Meddr. Dansk. Naturh. Foren. 140, 737.Google Scholar
Andersen, N. M. & Polhemus, J. T. 1976 Water-striders (Hemiptera: Gerridae, Veliidae, etc.). In Marine Insects (ed. Cheng, L.), pp. 187–224. A North Holland.Google Scholar
Barthlott, W. & Neinhuis, C. 1997 Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 202, 18.CrossRefGoogle Scholar
Bico, J., Roman, B., Moulin, L. & Boudaoud, A. 2004 Elastocapillary coalescence in wet hair. Nature 432, 690.CrossRefGoogle ScholarPubMed
Bico, J., Thiele, U. & Quérée, D. 2002 Wetting of textured surfaces. Colloids Surf. A 206, 4146.CrossRefGoogle Scholar
Brocher, F. 1912 a Reserches sur la respiration des insects aquatiques adultes – les elmides. Ann. Biol. Lac. 5, 136179.Google Scholar
Brocher, F. 1912 b Reserches sur la respiration des insects aquatiques adultes – les haemonia. Ann. Biol. Lac. 5, 526.Google Scholar
Brown, H. P. 1987 Biology of riffle beetles. Annu. Rev. Entomol. 32, 253273.CrossRefGoogle Scholar
Bush, J. W. M. & Hu, D. L. 2006 Walking on water: Biolocomotion at the interface. Annu. Rev. Fluid Mech. 38, 339369.CrossRefGoogle Scholar
Bush, J. W. M., Hu, D. L. & Prakash, M. 2008 The integument of water-walking anthropods: Form and function. Adv. Insect Physiol. 34, 117192.CrossRefGoogle Scholar
Cao, L., Hu, H.-H. & Gao, D. 2007 Design and fabrication of mirco-textures for inducing a superhydrophobic behavior on hydrophilic materials. Langmuir 23, 43104314.CrossRefGoogle ScholarPubMed
Carbone, G. & Mangialardi, L. 2005 Hydrophobic properties of a wavy rough substrate. Eur. Phys. J. E 16, 6776.Google ScholarPubMed
Cassie, A. B. D. & Baxter, S. 1944 Wettability of porous surfaces. Trans. Faraday Soc. 40, 546551.CrossRefGoogle Scholar
Chaui-Berlinck, J. G., Bicudo, J. E. & Monteiro, L. H. 2001 The oxygen gain of diving insects. Respir. Physiol. 128, 229233.CrossRefGoogle ScholarPubMed
Chen, Y., He, B., Lee, J. & Patankar, N. A. 2005 Anisotropy in the wetting of rough surfaces. J. Colloid Interface Sci. 281, 458464.CrossRefGoogle Scholar
Couzin, I. D. & Krause, J. 2003 Self-organization and collective behavior in vertebrates. J. Adv. Study Behav. 32, 175.CrossRefGoogle Scholar
Crisp, D. J. 1949 The stability of structures at a fluid interface. Trans. Faraday Soc. 46, 228235.CrossRefGoogle Scholar
Dokulil, M. T. 2005 European alpine lakes. In The Lake Handbook(ed. O'Sullivan, P. E. & Reynolds, C. S.), vol. 2, pp. 159178. Blackwell.Google Scholar
Doyen, J. T. 1976 Marine beetles (Coleoptera excluding Staphylinidae). In Aquatic Insects (ed. Cheng, L.), pp. 497520. North-Holland.Google Scholar
Ege, R. 1918 On the respiratory function of the air stores carried by some aquatic insects. Z. Allg. Physiol. 17, 81124.Google Scholar
Feng, Xi-Qiao & Jiang, Lei 2006 Design and creation of superwetting/antiwetting surfaces. Adv. Mater. 18, 30633078.CrossRefGoogle Scholar
Geankoplis, C. J. 1993 Transport Processes and Unit Operations. Prentice Hall.Google Scholar
de Gennes, P G, Brochard-Wyart, F & Quéré, D 2003 Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls and Waves. Springer.Google Scholar
Gittelman, S. H. 1975 Physical gill efficiency and water dormancy in the pigmy backswimmer, Neoplea striola (Hemiptera: Pleidae). Ann. Entomolo. Soc. Am. 68, 10111017.CrossRefGoogle Scholar
Herminghaus, S. 2000 Roughness-induced non-wetting. Europhys. Lett. 52, 165170.CrossRefGoogle Scholar
Hinton, H. E. 1976 Plastron respiration in bugs and beetles. J. Insect Physiol. 22, 15291550.CrossRefGoogle Scholar
Hinton, H. E. & Jarman, G. M. 1976 A diffusion equation for tapered plastrons. J. Insect Physiol. 22, 12631265.CrossRefGoogle Scholar
Holdgate, M. W. 1955 The wetting of insect cuticle by water. J. Expl Biol. 32, 591617.Google Scholar
Kim, H.-Y. & Mahadevan, L. 2006 Capillary rise between elastic sheets. J. Fluid Mech. 548, 141150.CrossRefGoogle Scholar
Kralchevsky, P. A. & Denkov, N. D. 2001 Capillary forces and structuring in layers of colloid particles. Curr. Opin. Colloid Interface Sci. 6, 383401.CrossRefGoogle Scholar
Kundu, P. K. 1990 Fluid Mechanics, 1st edn. Academic.Google Scholar
Lafuma, A. & Quéré, D. 2003 Superhydrophobic states. Nature Materials 2, 457460.CrossRefGoogle ScholarPubMed
Lamoral, B. H. 1968 On the ecology and habitat adaptations of two intertidal spiders, Desis formidabilis and Amaurobioides africanus Hewitt at ‘The Ísland’ (Kommetjie, Cape Peninsula) with notes on the occurence of two other spiders. Annu. Natal. Mus. 20, 151193.Google Scholar
Linden, P. F. 1999 The fluid mechanics of natural ventilation. Annu. Rev. Fluid Mech. 31, 201238.CrossRefGoogle Scholar
Matthews, P. G. D. & Seymour, R. S. 2006 Diving insects boost their buoyancy bubbles. Nature 441, 171.CrossRefGoogle ScholarPubMed
McMahon, T. & Bonner, J. T. 1985 On Size and Life. W. H. Freeman & Co.Google Scholar
Neinhuis, C. & Barthlott, W. 1997 Characterization and distribution of water-repellent, self-cleaning plant surfaces. Annu. Bot. 79, 667677.CrossRefGoogle Scholar
Nosonovsky, M. 2007 Multiscale roughness and stability of superhydrophobic biomimetic interfaces. Langmuir 23, 31573161.CrossRefGoogle Scholar
Otten, A. & Herminghaus, S. 2004 How plants keep dry: A physicist's point of view. Langmuir 20, 24052408.CrossRefGoogle ScholarPubMed
Perez-Goodwyn, P. J. 2007 Anti-wetting surfaces in Heteroptera (Insecta): Hairy solutions to any problem. In Functional Surfaces in Biology. Springer.Google Scholar
Rahn, H. & Paganelli, C. V. 1968 Gas exchange in gas gills of diving insects. Respir. Physiol. 5, 145164.CrossRefGoogle ScholarPubMed
Reysatt, M., Yeomans, J. M. & Quéré, D. 2008 Implacement of fakir drops. Europhys. Lett. 81, 26006.CrossRefGoogle Scholar
Reyssat, M. C. 2007 Splendeur et misére de l'effet lotus. PhD thesis, Université Pierre et Marie Curie.Google Scholar
de Ruiter, L., Wolvekamp, H. P., van Tooren, A. J. & Vlasblom, A. 1951 Experiments on the efficiency of the “physical gill” (Hydrous piceus l., Naucoris cimicoides l., and Notonecta glauca l.). Acta Physiol. Pharmacol. Neerl. pp. 180–213.Google Scholar
Schmidt-Nielsen, K. 1975 Animal Physiology – Adaptation and Environment. Cambridge University Press.Google Scholar
Schütz, D. & Taborsky, M. 2003 Adaptations to an aquatic life may be responsible for the reversed sexual size dimorphism in the water spider, argyroneta aquatica. Ecol. Evol. Res. 5, 105117.Google Scholar
Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C. & Pyatt, F. Brian 2006 Plastron properties of a superhydrophobic surface. Appl. Phys. Lett. 89, 104106.CrossRefGoogle Scholar
Spence, J. R., Spence, D. H. & Scudder, G. G. 1980 Submergence behavior in Gerris: Underwater basking. Am. Midl. Nat. 103, 385391.CrossRefGoogle Scholar
Stratton, G. E., Suter, R. B. & Miller, P. R. 2004 Evolution of water surface locomotion by spiders: a comparative approach. Biol. J. Linn. Soc. 81 (1), 6378.CrossRefGoogle Scholar
Stride, G. O. 1954 On the respiration of an aquatic african beetle, Potamodytes tuberosus Hinton. Ann. Entomolo. Soc. Am. 48, 344351.CrossRefGoogle Scholar
Thorpe, W. H. 1950 Plastron respiration in aquatic insects. Biol. Rev. 25, 344390.CrossRefGoogle ScholarPubMed
Thorpe, W. H. & Crisp, D. J. 1947 a Studies on plastron respiration. Part I. The biology of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] and the mechanism of plastron retention. J. Expl Biol. 24, 227269.Google Scholar
Thorpe, W. H. & Crisp, D. J. 1947 b Studies on plastron respiration. Part II. The respiratory efficiency of the plastron in Aphelocheirus. J. Expl Biol. 24, 270303.Google Scholar
Thorpe, W. H. & Crisp, D. J. 1947 c Studies on plastron respiration. Part III. The orientation responses of Aphelocheirus [Hemiptera, Aphelocheiridae (Naucoridae)] in relation to plastron respiration; together with an account of specialized pressure receptors in aquatic insects. J. Expl Biol. 24, 310328.Google Scholar
Thorpe, W. H. & Crisp, D. J. 1949 Studies on plastron respiration. Part IV. Plastron respiration in the Coleoptera. J. Expl Biol. 26, 219260.Google Scholar
Vogel, S. 2006 Living in a physical world viii. Gravity and life in the water. J. Biosci. 31, 309322.CrossRefGoogle Scholar
Wagner, P, Furstner, R, Barthlott, W & Neinhuis, C 2003 Quantitative assessment to the structural basis of water repellency in natural and technical surfaces. J. Expl Bot. 54, 12951303.CrossRefGoogle ScholarPubMed
Wenzel, R. N. 1936 Resistance of solid surfaces to wetting by water. Ind. Engng Chem. 28, 988994.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 2
Total number of PDF views: 709 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 19th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Underwater breathing: the mechanics of plastron respiration
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Underwater breathing: the mechanics of plastron respiration
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Underwater breathing: the mechanics of plastron respiration
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *