Hostname: page-component-848d4c4894-ndmmz Total loading time: 0 Render date: 2024-05-21T17:14:46.504Z Has data issue: false hasContentIssue false

Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells

Published online by Cambridge University Press:  15 January 2021

Ao Xu
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Xin Chen
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China
Heng-Dong Xi*
Affiliation:
School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, PR China Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China
*
Email address for correspondence: hengdongxi@nwpu.edu.cn

Abstract

We present a numerical study of the flow states and reversals of the large-scale circulation (LSC) in a two-dimensional circular Rayleigh–Bénard cell. Long-time direct numerical simulations are carried out in the Rayleigh number ($Ra$) range $10^{7} \leqslant Ra \leqslant 10^{8}$ and Prandtl number ($Pr$) range $2.0 \leqslant Pr \leqslant 20.0$. We found that a new, long-lived, chaotic flow state exists, in addition to the commonly observed circulation states (the LSC in the clockwise and counterclockwise directions). The circulation states consist of one primary roll in the middle and two secondary rolls near the top and bottom circular walls. The primary roll becomes stronger and larger, while the two secondary rolls diminish, with increasing $Ra$. Our results suggest that the reversal of the LSC is accompanied by the secondary rolls growing, breaking the primary roll and then connecting to form a new primary roll with reversed direction. We mapped out the phase diagram of the existence of the LSC and the reversal in the $Ra\text{--}Pr$ space, which reveals that the flow is in the circulation states when $Ra$ is large and $Pr$ is small. The reversal of the LSC can only occur in a limited $Pr$ range. The phase diagram can be understood in terms of competition between the thermal and viscous diffusions. We also found that the internal flow states manifested themselves into global properties such as Nusselt and Reynolds numbers.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Aidun, C. K. & Clausen, J. R. 2010 Lattice-Boltzmann method for complex flows. Annu. Rev. Fluid Mech. 42, 439472.CrossRefGoogle Scholar
Berkooz, G., Holmes, P. & Lumley, J. L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.CrossRefGoogle Scholar
Biggin, A. J., Steinberger, B., Aubert, J., Suttie, N., Holme, R., Torsvik, T. H., van der Meer, D. G. & Van Hinsbergen, D. J. J. 2012 Possible links between long-term geomagnetic variations and whole-mantle convection processes. Nat. Geosci. 5 (8), 526533.CrossRefGoogle Scholar
Bouzidi, M., Firdaouss, M. & Lallemand, P. 2001 Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13 (11), 34523459.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2006 Rotations and cessations of the large-scale circulation in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 568, 351386.CrossRefGoogle Scholar
Brown, E., Nikolaenko, A. & Ahlers, G. 2005 Reorientation of the large-scale circulation in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95 (8), 084503.CrossRefGoogle ScholarPubMed
Castillo-Castellanos, A., Sergent, A., Podvin, B. & Rossi, M. 2019 Cessation and reversals of large-scale structures in square Rayleigh–Bénard cells. J. Fluid Mech. 877, 922954.CrossRefGoogle Scholar
Castillo-Castellanos, A., Sergent, A. & Rossi, M. 2016 Reversal cycle in square Rayleigh–Bénard cells in turbulent regime. J. Fluid Mech. 808, 614640.CrossRefGoogle Scholar
Chandra, M. & Verma, M. K. 2011 Dynamics and symmetries of flow reversals in turbulent convection. Phys. Rev. E 83 (6), 067303.CrossRefGoogle ScholarPubMed
Chandra, M. & Verma, M. K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.CrossRefGoogle ScholarPubMed
Chen, S. & Doolen, G. D. 1998 Lattice Boltzmann method for fluid flows. Annu. Rev. Fluid Mech. 30 (1), 329364.CrossRefGoogle Scholar
Chen, X., Huang, S.-D., Xia, K.-Q. & Xi, H.-D. 2019 Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection. J. Fluid Mech. 877, R1.CrossRefGoogle Scholar
Chen, X., Wang, D.-P. & Xi, H.-D. 2020 Reduced flow reversals in the absence of corner vortices. J. Fluid Mech. 891, R5.CrossRefGoogle Scholar
Chilla, F., Rastello, M., Chaumat, S. & Castaing, B. 2004 Long relaxation times and tilt sensitivity in Rayleigh–Bénard turbulence. Eur. Phys. J. B 40 (2), 223227.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.CrossRefGoogle ScholarPubMed
Chong, K. L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3 (1), 013501.CrossRefGoogle Scholar
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54 (6), R5901.CrossRefGoogle ScholarPubMed
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
van Doorn, E., Dhruva, B., Sreenivasan, K. R. & Cassella, V. 2000 Statistics of wind direction and its increments. Phys. Fluids 12 (6), 15291534.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92 (19), 194502.CrossRefGoogle Scholar
Gallet, B., Herault, J., Laroche, C., Pétrélis, F. & Fauve, S. 2012 Reversals of a large-scale field generated over a turbulent background. Geophys. Astrophys. Fluid Dyn. 106 (4–5), 468492.CrossRefGoogle Scholar
Glatzmaier, G. A., Coe, R. S., Hongre, L. & Roberts, P. H. 1999 The role of the Earth's mantle in controlling the frequency of geomagnetic reversals. Nature 401 (6756), 885890.CrossRefGoogle Scholar
Huang, S.-D. & Xia, K.-Q. 2016 Effects of geometric confinement in quasi-2-D turbulent Rayleigh–Bénard convection. J. Fluid Mech. 794, 639654.CrossRefGoogle Scholar
Kaczorowski, M. & Xia, K.-Q. 2013 Turbulent flow in the bulk of Rayleigh–Bénard convection: small-scale properties in a cubic cel. J. Fluid Mech. 722, 596617.CrossRefGoogle Scholar
Kerr, R. M. 1996 Rayleigh number scaling in numerical convection. J. Fluid Mech. 310, 139179.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L. N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78 (4), 19811985.CrossRefGoogle ScholarPubMed
Li, L., Mei, R. & Klausner, J. F. 2013 Boundary conditions for thermal lattice Boltzmann equation method. J. Comput. Phys. 237, 366395.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Miesch, M. S. & Toomre, J. 2009 Turbulence, magnetism, and shear in stellar interiors. Annu. Rev. Fluid Mech. 41, 317345.CrossRefGoogle Scholar
Mishra, P. K., De, A. K., Verma, M. K. & Eswaran, V. 2011 Dynamics of reorientations and reversals of large-scale flow in Rayleigh–Bénard convection. J. Fluid Mech. 668, 480499.CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.CrossRefGoogle Scholar
Pétrélis, F., Fauve, S., Dormy, E. & Valet, J.-P. 2009 Simple mechanism for reversals of Earth's magnetic field. Phys. Rev. Lett. 102 (14), 144503.CrossRefGoogle ScholarPubMed
Petschel, K., Wilczek, M., Breuer, M., Friedrich, R. & Hansen, U. 2011 Statistical analysis of global wind dynamics in vigorous Rayleigh–Bénard convection. Phys. Rev. E 84 (2), 026309.CrossRefGoogle ScholarPubMed
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2017 Precursor for wind reversal in a square Rayleigh–Bénard cell. Phys. Rev. E 95 (1), 013112.CrossRefGoogle Scholar
van der Poel, E. P., Stevens, R. J. A. M. & Lohse, D. 2011 Connecting flow structures and heat flux in turbulent Rayleigh–Bénard convection. Phys. Rev. E 84 (4), 045303.CrossRefGoogle ScholarPubMed
van der Poel, E. P., Stevens, R. J. A. M. & Lohse, D. 2013 Comparison between two- and three-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 736, 177194.CrossRefGoogle Scholar
van der Poel, E. P., Stevens, R. J. A. M., Sugiyama, K. & Lohse, D. 2012 Flow states in two-dimensional Rayleigh–Bénard convection as a function of aspect-ratio and Rayleigh number. Phys. Fluids 24 (8), 085104.CrossRefGoogle Scholar
Roche, P.-E., Castaing, B., Chabaud, B. & Hébral, B. 2002 Prandtl and Rayleigh numbers dependences in Rayleigh–Bénard convection. Europhys. Lett. 58 (5), 693698.CrossRefGoogle Scholar
Shraiman, B. I. & Siggia, E. D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 36503653.CrossRefGoogle ScholarPubMed
Silano, G., Sreenivasan, K. R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between $10^{-1}$ and $10^{4}$ and Rayleigh numbers between $10^{5}$ and $10^{9}$. J. Fluid Mech. 662, 409446.CrossRefGoogle Scholar
Song, H., Brown, E., Hawkins, R. & Tong, P. 2014 Dynamics of large-scale circulation of turbulent thermal convection in a horizontal cylinder. J. Fluid Mech. 740, 136167.CrossRefGoogle Scholar
Song, H., Villermaux, E. & Tong, P. 2011 Coherent oscillations of turbulent Rayleigh–Bénard convection in a thin vertical disk. Phys. Rev. Lett. 106 (18), 184504.CrossRefGoogle Scholar
Soucasse, L., Podvin, B., Rivière, P. & Soufiani, A. 2019 Proper orthogonal decomposition analysis and modelling of large-scale flow reorientations in a cubic Rayleigh–Bénard cell. J. Fluid Mech. 881, 2350.CrossRefGoogle Scholar
Sreenivasan, K. R., Bershadskii, A. & Niemela, J. J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65 (5), 056306.CrossRefGoogle ScholarPubMed
Sugiyama, K., Calzavarini, E., Grossmann, S. & Lohse, D. 2009 Flow organization in two-dimensional non-Oberbeck–Boussinesq Rayleigh–Bénard convection in water. J. Fluid Mech. 637, 105135.CrossRefGoogle Scholar
Sugiyama, K., Ni, R., Stevens, R. J. A. M., Chan, T. S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.CrossRefGoogle ScholarPubMed
Sun, C., Xi, H.-D. & Xia, K.-Q. 2005 Azimuthal symmetry, flow dynamics, and heat transport in turbulent thermal convection in a cylinder with an aspect ratio of 0.5. Phys. Rev. Lett. 95 (7), 074502.CrossRefGoogle Scholar
Sun, C. & Xia, K.-Q. 2005 Scaling of the Reynolds number in turbulent thermal convection. Phys. Rev. E 72 (6), 067302.CrossRefGoogle ScholarPubMed
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.CrossRefGoogle Scholar
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H. 2018 a Flow reversals in two-dimensional thermal convection in tilted cells. J. Fluid Mech. 849, 355372.CrossRefGoogle Scholar
Wang, Y., Lai, P.-Y., Song, H. & Tong, P. 2018 b Mechanism of large-scale flow reversals in turbulent thermal convection. Sci. Adv. 4 (11), eaat7480.CrossRefGoogle ScholarPubMed
Wang, Y., Xu, W., He, X., Yik, H., Wang, X., Schumacher, J. & Tong, P. 2018 c Boundary layer fluctuations in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 840, 408431.CrossRefGoogle Scholar
Weiss, S. & Ahlers, G. 2011 a The large-scale flow structure in turbulent rotating Rayleigh–Bénard convection. J. Fluid Mech. 688, 461492.CrossRefGoogle Scholar
Weiss, S. & Ahlers, G. 2011 b Turbulent Rayleigh–Bénard convection in a cylindrical container with aspect ratio $\gamma = 0.50$ and Prandtl number ${P}r= 4.38$. J. Fluid Mech. 676, 540.CrossRefGoogle Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75 (6), 066307.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 a Azimuthal motion, reorientation, cessation, and reversal of the large-scale circulation in turbulent thermal convection: a comparative study in aspect ratio one and one-half geometries. Phys. Rev. E 78 (3), 036326.CrossRefGoogle ScholarPubMed
Xi, H.-D. & Xia, K.-Q. 2008 b Flow mode transitions in turbulent thermal convection. Phys. Fluids 20 (5), 055104.CrossRefGoogle Scholar
Xi, H.-D., Zhang, Y.-B., Hao, J.-T. & Xia, K.-Q. 2016 Higher-order flow modes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 3151.CrossRefGoogle Scholar
Xi, H.-D., Zhou, S.-Q., Zhou, Q., Chan, T.-S. & Xia, K.-Q. 2009 Origin of the temperature oscillation in turbulent thermal convection. Phys. Rev. Lett. 102 (4), 044503.CrossRefGoogle ScholarPubMed
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3 (5), 052001.CrossRefGoogle Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68 (6), 066303.CrossRefGoogle ScholarPubMed
Xiao, Y, Tao, J.-J., Ma, X. & Xiong, X.-M. 2018 Oscillating convection and reversal flow in connected cavities. Phys. Rev. E 98, 063109.CrossRefGoogle Scholar
Xu, A., Shi, L. & Xi, H.-D. 2019 a Lattice Boltzmann simulations of three-dimensional thermal convective flows at high Rayleigh number. Intl J. Heat Mass Transfer 140, 359370.CrossRefGoogle Scholar
Xu, A., Shi, L. & Xi, H.-D. 2019 b Statistics of temperature and thermal energy dissipation rate in low-Prandtl number turbulent thermal convection. Phys. Fluids 31 (12), 125101.Google Scholar
Xu, A., Shi, L. & Zhao, T. S. 2017 a Accelerated lattice Boltzmann simulation using GPU and OpenACC with data management. Intl J. Heat Mass Transfer 109, 577588.CrossRefGoogle Scholar
Xu, A., Shyy, W. & Zhao, T. 2017 b Lattice Boltzmann modeling of transport phenomena in fuel cells and flow batteries. Acta Mechanica Sin. 33 (3), 555574.CrossRefGoogle Scholar
Zhang, Y., Zhou, Q. & Sun, C. 2017 Statistics of kinetic and thermal energy dissipation rates in two-dimensional turbulent Rayleigh–Bénard convection. J. Fluid Mech. 814, 165184.CrossRefGoogle Scholar
Zhou, Q. & Xia, K.-Q. 2010 Physical and geometrical properties of thermal plumes in turbulent Rayleigh–Bénard convection. New J. Phys. 12 (7), 075006.CrossRefGoogle Scholar
Zhou, S.-Q., Sun, C. & Xia, K.-Q. 2007 Measured oscillations of the velocity and temperature fields in turbulent Rayleigh-Bénard convection in a rectangular cell. Phys. Rev. E 76 (3), 036301.CrossRefGoogle Scholar
Zhou, W.-F. & Chen, J. 2018 Similarity model for corner roll in turbulent Rayleigh–Bénard convection. Phys. Fluids 30 (11), 111705.Google Scholar

Xu et al. supplementary movie 1

See pdf file for movie caption

Download Xu et al. supplementary movie 1(Video)
Video 9.3 MB

Xu et al. supplementary movie 2

See pdf file for movie caption

Download Xu et al. supplementary movie 2(Video)
Video 10.1 MB

Xu et al. supplementary movie 3

See pdf file for movie caption

Download Xu et al. supplementary movie 3(Video)
Video 10.1 MB
Supplementary material: PDF

Xu et al. supplementary material

Captions for movies 1-3

Download Xu et al. supplementary material(PDF)
PDF 13.6 KB