Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.4 Render date: 2021-02-28T20:03:56.259Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Swirling flow of viscoelastic fluids. Part 1. Interaction between inertia and elasticity

Published online by Cambridge University Press:  01 March 2001

JASON R. STOKES
Affiliation:
Department of Chemical Engineering, The University of Melbourne, Parkville 3052, Australia
LACHLAN J. W. GRAHAM
Affiliation:
Advanced Fluid Dynamics Laboratory, CSIRO Building Construction and Engineering, Graham Road, Highett 3190, Australia
NICK J. LAWSON
Affiliation:
Department of Chemical Engineering, The University of Melbourne, Parkville 3052, Australia
DAVID V. BOGER
Affiliation:
Department of Chemical Engineering, The University of Melbourne, Parkville 3052, Australia

Abstract

A torsionally driven cavity, consisting of a fully enclosed cylinder with rotating bottom lid, is used to examine the confined swirling flow of low-viscosity Boger fluids for situations where inertia dominates the flow field. Flow visualization and the optical technique of particle image velocimetry (PIV) are used to examine the effect of small amounts of fluid elasticity on the phenomenon of vortex breakdown. Low-viscosity Boger fluids are used which consist of dilute concentrations of high molecular weight polyacrylamide or semi-dilute concentrations of xanthan gum in a Newtonian solvent. The introduction of elasticity results in a 20% and 40% increase in the minimum critical aspect ratio required for vortex breakdown to occur using polyacrylamide and xanthan gum, respectively, at concentrations of 45 p.p.m. When the concentrations of either polyacrylamide or xanthan gum are raised to 75 p.p.m., vortex breakdown is entirely suppressed for the cylinder aspect ratios examined. Radial and axial velocity measurements along the axial centreline show that the alteration in existence domain is linked to a decrease in the magnitude of the peak in axial velocity along the central axis. The minimum peak axial velocities along the central axis for the 75 p.p.m. polyacrylamide and 75 p.p.m. xanthan gum Boger fluids are 67% and 86% lower in magnitude, respectively, than for the Newtonian fluid at Reynolds number of Re ≈ 1500–1600. This decrease in axial velocity is associated with the interaction of elasticity in the governing boundary on the rotating base lid and/or the interaction of extensional viscosity in areas with high velocity gradients. The low-viscosity Boger fluids used in this study are rheologically characterized and the steady complex flow field has well-defined boundary conditions. Therefore, the results will allow validation of non-Newtonian constitutive models in a numerical model of a torsionally driven cavity flow.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 8
Total number of PDF views: 139 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Swirling flow of viscoelastic fluids. Part 1. Interaction between inertia and elasticity
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Swirling flow of viscoelastic fluids. Part 1. Interaction between inertia and elasticity
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Swirling flow of viscoelastic fluids. Part 1. Interaction between inertia and elasticity
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *