Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-kbg4c Total loading time: 0.33 Render date: 2021-04-13T17:49:30.255Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion

Published online by Cambridge University Press:  26 November 2015

Ory Schnitzer
Affiliation:
Department of Mathematics, Imperial College London, Queen’s Gate 180, London SW7 2AZ, UK
Ehud Yariv
Affiliation:
Department of Mathematics, Technion – Israel Institute of Technology, Haifa 32000, Israel
Corresponding

Abstract

We employ the moderate-Péclet-number macroscale model developed in part 2 of this sequence (Schnitzer et al., J. Fluid Mech., vol. 704, 2012, pp. 109–136) towards the calculation of electroviscous forces on charged solid particles engendered by an imposed relative motion between these particles and the electrolyte solution in which they are suspended. In particular, we are interested in the kinematic irreversibility of these forces, stemming from the diffusio-osmotic slip which accompanies the salt-concentration polarisation induced by that imposed motion. We illustrate the electroviscous irreversibility using two prototypic problems, one involving side-by-side sedimentation of two spherical particles, and the other involving a force-free spherical particle suspended in the vicinity of a planar wall and exposed to a simple shear flow. We focus on the pertinent limit of near-contact configurations, where use of lubrication approximations provides closed-form expressions for the leading-order lateral repulsion. In this approximation scheme, the need to solve the advection–diffusion equation governing the salt-concentration polarisation is circumvented.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alexander, B. M. & Prieve, D. C. 1987 A hydrodynamic technique for measurement of colloidal forces. Langmuir 3 (5), 788795.CrossRefGoogle Scholar
Bike, S. G., Lazarro, L. & Prieve, D. C. 1995 Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall I. Experiment. J. Colloid Interface Sci. 175 (2), 411421.CrossRefGoogle Scholar
Bike, S. G. & Prieve, D. C. 1990 Electrohydrodynamic lubrication with thin double layers. J. Colloid Interface Sci. 136 (1), 95112.CrossRefGoogle Scholar
Bike, S. G. & Prieve, D. C. 1995 Electrokinetic lift of a sphere moving in slow shear flow parallel to a wall II. Theory. J. Colloid Interface Sci. 175 (2), 422434.CrossRefGoogle Scholar
Booth, F. 1950 The electroviscous effect for suspensions of solid spherical particles. Proc. R. Soc. Lond. A 203 (1075), 533551.CrossRefGoogle Scholar
Booth, F. 1954 Sedimentation potential and velocity of solid spherical particles. J. Chem. Phys. 22, 19561968.CrossRefGoogle Scholar
Bowen, W. R. & Jenner, F. 1995 Electroviscous effects in charged capillaries. J. Colloid Interface Sci. 173 (2), 388395.CrossRefGoogle Scholar
Cooley, M. D. A. & O’Neill, M. E. 1968 On the slow rotation of a sphere about a diameter parallel to a nearby plane wall. J. Inst. Math. Applics. 4, 163173.CrossRefGoogle Scholar
Cox, R. G. 1997 Electroviscous forces on a charged particle suspended in a flowing liquid. J. Fluid Mech. 338, 134.CrossRefGoogle Scholar
Cox, R. G. & Brenner, H. 1967 The slow motion of a sphere through a viscous fluid towards a plane surface – II. Small gap widths, including inertial effects. Chem. Engng Sci. 22, 17531777.CrossRefGoogle Scholar
Doi, M. & Makino, M. 2008 Electrokinetic boundary condition compatible with the Onsager reciprocal relation in the thin double layer approximation. J. Chem. Phys. 128, 044715.CrossRefGoogle ScholarPubMed
Elton, G. A. H. 1948 Electroviscosity. I. The flow of liquids between surfaces in close proximity. Proc. R. Soc. Lond. A 194 (1037), 259.CrossRefGoogle Scholar
Elton, G. A. H. 1949 Electroviscosity. III. Sedimentation phenomena in ionic liquids. Proc. R. Soc. Lond. A 197 (1051), 568572.CrossRefGoogle Scholar
Happel, J. & Brenner, H. 1965 Low Reynolds Number Hydrodynamics. Prentice-Hall.Google Scholar
Hinch, E. J. 1991 Perturbation Methods. Cambridge University Press.CrossRefGoogle Scholar
Hinch, E. J. & Sherwood, J. D. 1983 Primary electroviscous effect in a suspension of spheres with thin double layers. J. Fluid Mech. 132, 337347.CrossRefGoogle Scholar
Israelachvili, J. N. 2010 Intermolecular and Surface Forces. Academic Press.Google Scholar
Jeffrey, D. J. 1996 Some basic principles in interaction calculations. In Sedimentation of Small Particles in a Viscous Fluid (ed. Torry, E. M.), chap. 4, pp. 97124. Computational Mechanics.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes. Cambridge University Press.CrossRefGoogle Scholar
Lever, D. A. 1979 Large distortion of the electric double layer around a charged particle by a shear flow. J. Fluid Mech. 92 (03), 421433.CrossRefGoogle Scholar
Ohshima, H., Healy, T. W., White, L. R. & O’Brien, R. W. 1984 Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc. Faraday Trans. 80 (10), 12991317.CrossRefGoogle Scholar
O’Neill, M. E. 1968 A sphere in contact with a plane wall in a slow linear shear flow. Chem. Engrg Sci. 23 (11), 12931298.CrossRefGoogle Scholar
O’Neill, M. E. 1969 On asymmetrical slow viscous flows caused by the motion of two equal spheres almost in contact. Math. Proc. Cambridge Philos. Soc. 65 (2), 543556.CrossRefGoogle Scholar
O’Neill, M. E. & Stewartson, K. 1967 On the slow motion of a sphere parallel to a nearby plane wall. J. Fluid Mech. 27, 705724.CrossRefGoogle Scholar
Rice, C. L. & Whitehead, R. 1965 Electrokinetic flow in a narrow cylindrical capillary. J. Phys. Chem. 69 (11), 40174024.CrossRefGoogle Scholar
Russel, W. B. 1976 Low-shear limit of the secondary electroviscous effect. J. Colloid Interface Sci. 55 (3), 590604.CrossRefGoogle Scholar
Russel, W. B. 1978a Bulk stresses due to deformation of the electrical double layer around a charged sphere. J. Fluid Mech. 85 (04), 673683.CrossRefGoogle Scholar
Russel, W. B. 1978b The rheology of suspensions of charged rigid spheres. J. Fluid Mech. 85 (02), 209232.CrossRefGoogle Scholar
Saville, D. A. 1977 Electrokinetic effects with small particles. Annu. Rev. Fluid Mech. 9, 321337.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2012a Shear-induced electrokinetic lift at large Péclet numbers. Math. Model. Nat. Phenom. 7 (04), 6481.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2012b Streaming-potential phenomena in the thin-Debye-layer limit. Part 2. Moderate-Péclet-number theory. J. Fluid Mech. 704, 109136.CrossRefGoogle Scholar
Schnitzer, O., Frankel, I. & Yariv, E. 2013 Electrokinetic flows about conducting drops. J. Fluid Mech. 722, 394423.CrossRefGoogle Scholar
Schnitzer, O., Khair, A. & Yariv, E. 2011 Irreversible electrokinetic repulsion in zero-Reynolds-number sedimentation. Phys. Rev. Lett. 107, 278301.CrossRefGoogle ScholarPubMed
Schnitzer, O. & Yariv, E. 2014 Nonlinear electrophoresis at arbitrary field strengths: small-Dukhin-number analysis. Phys. Fluids 26 (12), 122002.CrossRefGoogle Scholar
Stigter, D. 1980 Sedimentation of highly charged colloidal spheres. J. Phys. Chem. 84 (21), 27582762.CrossRefGoogle Scholar
Tabatabaei, S. M., van de Ven, T. G. M. & Rey, A. D. 2006 Electroviscous sphere-wall interactions. J. Colloid Interface Sci. 301 (1), 291301.CrossRefGoogle ScholarPubMed
van de Ven, T. G. M., Warszynski, P. & Dukhin, S. S. 1993 Electrokinetic lift of small particles. J. Colloid Interface Sci. 157 (2), 328331.CrossRefGoogle Scholar
Warszynski, P. & van de Ven, T. G. M. 1990 Electroviscous forces. Faraday Discuss. Chem. Soc. 90, 313321.CrossRefGoogle Scholar
Warszynski, P. & van de Ven, T. G. M. 1991 Effect of electroviscous drag on the coagulation and deposition of electrically charged colloidal particles. Adv. Colloid Interface Sci. 36, 3363.CrossRefGoogle Scholar
Warszynski, P., Wu, X. & van de Ven, T. G. M. 1998 Electrokinetic lift force for a charged particle moving near a charged wall – a modified theory and experiment. Colloid Surf. A 140 (1–3), 183198.CrossRefGoogle Scholar
Watterson, I. G. & White, L. R 1981 Primary electroviscous effect in suspensions of charged spherical particles. J. Chem. Soc. Faraday Trans. 2 77 (7), 11151128.CrossRefGoogle Scholar
Yariv, E., Schnitzer, O. & Frankel, I. 2011 Streaming-potential phenomena in the thin-Debye-layer limit. Part 1. General theory. J. Fluid Mech. 685, 306334.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 140 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Streaming-potential phenomena in the thin-Debye-layer limit. Part 3. Shear-induced electroviscous repulsion
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *