Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-n95np Total loading time: 0.573 Render date: 2021-04-12T00:34:58.235Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Spiral patterns of inertia–gravity waves in geophysical flows

Published online by Cambridge University Press:  14 August 2006

ÁLVARO VIÚDEZ
Affiliation:
Institut de Ciènces del Mar, CSIC, Barcelona, Spain aviudez@cmima.csic.es

Abstract

High-resolution three-dimensional numerical experiments show that initially balanced (void of waves) geophysical flows, static and inertially stable, generate spiral patterns of small-amplitude inertia–gravity waves (IGWs). The spiral wave patterns are due to the spontaneous generation of IGW packets emitted from fluid volumes (the IGW sources) experiencing large local changes of potential vorticity. The IGW packets spread away from the vortical flow and cause spiral wave patterns of the same sense of spiralling, cyclonic or anticyclonic, as the moving IGW sources. The spiral patterns are noticeable in the vertical velocity in deep layers, away from the large-amplitude balanced vertical velocity. The generation of the spiral wave patterns is illustrated through several examples, namely, the single ellipsoidal vortex (cyclone and anticyclone), the merging of two spherical vortices, the dipole, and the anticyclonic shear instability.

Type
Papers
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 50 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 12th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Spiral patterns of inertia–gravity waves in geophysical flows
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Spiral patterns of inertia–gravity waves in geophysical flows
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Spiral patterns of inertia–gravity waves in geophysical flows
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *