Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-lxfbv Total loading time: 0.207 Render date: 2021-04-23T05:08:02.411Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Shallow flow past a cylinder: control of the near wake

Published online by Cambridge University Press:  05 September 2005

H. FU
Affiliation:
Lehigh University, Department of Mechanical Engineering and Mechanics, 354 Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA dor0@lehigh.edu
D. ROCKWELL
Affiliation:
Lehigh University, Department of Mechanical Engineering and Mechanics, 354 Packard Laboratory, 19 Memorial Drive West, Bethlehem, PA 18015, USA dor0@lehigh.edu

Abstract

Vortex formation in the near wake of shallow flow past a vertical cylinder can be substantially delayed by base bleed through a very narrow slot. The structure of the wake associated with this delay changes dramatically with the dimensionless momentum coefficient of the slot bleed. At very low values, where substantial vortex delay is attainable, the bleed flow is barely detectable. For progressively larger values, various forms of jets issue from the slot, and they undergo ordered, large-amplitude undulations, not necessarily synchronized with the formation of the large-scale vortices. When the cylinder is subjected to appropriate rotational perturbations, in the presence of small-magnitude base bleed, it is possible to transform the delayed vortex formation to a form characteristic of the naturally occurring vortices and, furthermore, to induce a large change of the phase, or timing, of the initially formed vortex, relative to the cylinder motion.

These features of the near-wake structure are assessed via a technique of high-image-density particle image velocimetry, which provides whole-field patterns of vorticity, Reynolds stress, amplitude distributions of spectral peaks, and streamline topology at and above the bed, for both the delayed and recovered states of the wake. Among the findings is that even small bleed can substantially alter the patterns of streamline topology and Reynolds stress at the bed, which has important consequences for the bed loading.

These alterations of the near-wake structure occur in conjunction with modifications of the shallow approach flow, which is incident upon the upstream face of the cylinder. The topology at the bed, which is altered in accord with attenuation of the well-defined vorticity concentration of the horseshoe (standoff) vortex, shows distinctive patterns involving new arrangements of critical points.

Type
Papers
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 191 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Shallow flow past a cylinder: control of the near wake
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Shallow flow past a cylinder: control of the near wake
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Shallow flow past a cylinder: control of the near wake
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *