Skip to main content Accessibility help
×
Home

Resolution and structure of the wall pressure field beneath a turbulent boundary layer

Published online by Cambridge University Press:  28 March 2006

W. W. Willmarth
Affiliation:
Department of Aeronautical and Astronautical Engineering, The University of Michigan
F. W. Roos
Affiliation:
Department of Aeronautical and Astronautical Engineering, The University of Michigan

Abstract

The power spectrum of the wall pressure that would be measured by a transducer of vanishingly small size and the corrections to the power spectra measured by finite-size transducers are determined from the spectra measured by four transducers of different diameters. The root-mean-square wall pressure measured by a transducer of vanishingly small size is $\sqrt {p^2}| \tau_w = 2 \cdot 66$, approximately 13% higher than the root-mean-square pressure measured by the transducer used in the earlier investigations of Willmarth & Wooldridge (1962). Corrections to the power spectrum measured by a finite-size transducer are computed using the theory of Uberoi & Kovasznay (1952, 1953). The computations require information about the correlation of the wall pressure for very small spatial separation of the transducers. Unfortunately, these measurements have never been made. Corcos's (1964) similarity of the cross-spectral density is assumed to represent the missing information, but the computed corrections fail at high frequencies because the similarity expression is not valid when the spatial separation is small. The range of validity of the similarity is determined, and the average radial derivative of the cross-spectral density is inferred from the measured power spectra.

Type
Research Article
Copyright
© 1965 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Bull, M. K. 1963 University of Southampton A.A.S.U., Rep. no. 234.
Bull, M. K., Wilby, J. F. & Blackman, D. R. 1963 University of Southampton A.A.S.U., Rep. no. 243.
Corcos, G. M. 1962 University of California Inst. of Eng. Res. Rep., Series 183, no. 2.
Corcos, G. M. 1963 J. Acoust. Soc. Amer. 35.
Corcos, G. M. 1964 J. Fluid Mech. 18, 353.
Liepmann, H. W. 1952 Z. angew. Math. Phys. 3, 322.
Uberoi, M. S. & Kovasznay, L. S. G. 1952 Johns Hopkins University Project Squid Tech. Rep. no. 30.
Uberoi, M. S. & Kovasznay, L. S. G. 1953 Quart. Appl. Math. 10, 375.
Willmarth, W. W. 1961 WADC Tech. Rep. no. 59-676 109.
Willmarth, W. W. 1965 J. Fluid Mech. 21, 107.
Willmarth, W. W. & Wooldridge, C. E. 1962 J. Fluid Mech. 14, 187.
Willmarth, W. W. & Wooldridge, C. E. 1963 AGARD Rep. no. 456.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 79 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-tvlwp Total loading time: 0.316 Render date: 2021-01-24T09:41:51.617Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Resolution and structure of the wall pressure field beneath a turbulent boundary layer
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Resolution and structure of the wall pressure field beneath a turbulent boundary layer
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Resolution and structure of the wall pressure field beneath a turbulent boundary layer
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *