Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-25T22:03:31.871Z Has data issue: false hasContentIssue false

Particle force-based density segregation theory for multi-component granular mixtures in a periodic chute flow

Published online by Cambridge University Press:  30 January 2023

Vishnu Kumar Sahu
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India
Soniya Kumawat
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India
Shivani Agrawal
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India
Anurag Tripathi*
Affiliation:
Department of Chemical Engineering, Indian Institute of Technology Kanpur, 208016, India
*
Email address for correspondence: anuragt@iitk.ac.in

Abstract

Density segregation of multi-component granular mixtures in a dense, gravity-driven flow over a rough and bumpy periodic chute surface is studied using theory and simulations. An existing theoretical model for predicting the steady-state concentration field of each species in a binary mixture using the forces acting on the particles is generalised for multi-component mixtures in this work. In addition, the rheological model for binary mixtures is also extended to multi-component mixtures. In contrast to the percolation velocity-based empirical segregation models that do not account for the rheology and need prior knowledge of the velocity field, the present approach accounts for the inter-coupling of rheology with segregation. The momentum balance equations are solved, along with the mixture rheological model as well as the multi-component density segregation model, to obtain concentration fields using an iterative numerical method. The theoretical predictions are compared with discrete element method (DEM) simulations for ternary, quaternary and quinary granular mixtures differing in density. The steady-state profiles for the concentration of different species as well as other flow properties predicted from the theory are in excellent agreement with the DEM simulation results for a variety of compositions over a range of inclination angles for different density ratios. Through this work, we take the first essential step towards proposing a generalised particle force-based segregation theory for multi-component mixtures differing in size and/or density.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bancroft, R.S.J. & Johnson, C.G. 2021 Drag, diffusion and segregation in inertial granular flows. J. Fluid Mech. 924, A3.CrossRefGoogle Scholar
Barker, T., Rauter, M., Maguire, E.S.F., Johnson, C.G. & Gray, J.M.N.T. 2021 Coupling rheology and segregation in granular flows. J. Fluid Mech. 909, A22.CrossRefGoogle Scholar
Barker, T., Schaeffer, D.G., Bohórquez, P. & Gray, J.M.N.T. 2015 Well-posed and ill-posed behaviour of the $\mu (I)$-rheology for granular flow. J. Fluid Mech. 779, 794818.CrossRefGoogle Scholar
Barker, T., Schaeffer, D.G., Shearer, M. & Gray, J.M.N.T. 2017 Well-posed continuum equations for granular flow with compressibility and $\mu (I)$ rheology. Proc. R. Soc. Lond. A 473 (2201), 20160846.Google ScholarPubMed
Baxter, J., Tüzün, U., Heyes, D., Hayati, I. & Fredlund, P. 1998 Stratification in poured granular heaps. Nature 391 (6663), 136.CrossRefGoogle Scholar
Bridgwater, J., Foo, W.S. & Stephens, D.J. 1985 Particle mixing and segregation in failure zones – theory and experiment. Powder Technol. 41 (2), 147158.CrossRefGoogle Scholar
Burtally, N., King, P.J. & Swift, M.R. 2002 Spontaneous air-driven separation in vertically vibrated fine granular mixtures. Science 295 (5561), 18771879.CrossRefGoogle ScholarPubMed
Chen, H., Zhao, X., Xiao, Y., Liu, Y.-L. & Liu, Y. 2016 Radial mixing and segregation of granular bed bi-dispersed both in particle size and density within horizontal rotating drum. T. Nonferr. Metal. Soc. 26 (2), 527535.CrossRefGoogle Scholar
Cui, K.F.E., Zhou, G.G.D. & Jing, L. 2022 Particle segregation and diffusion in fluid-saturated granular shear flows. Phys. Rev. Fluids 7, 014305.CrossRefGoogle Scholar
Da Cruz, F., Emam, S., Prochnow, M., Roux, J.N. & Chevoir, F. 2005 Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72 (2), 021309.CrossRefGoogle ScholarPubMed
Deng, Z., Fan, Y., Theuerkauf, J., Jacob, K.V., Umbanhowar, P.B. & Lueptow, R.M. 2020 Modeling segregation of polydisperse granular materials in hopper discharge. Powder Technol. 374, 389398.CrossRefGoogle Scholar
Deng, Z., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2018 Continuum modelling of segregating tridisperse granular chute flow. Proc. R. Soc. Lond. A 474 (2211), 20170384.Google ScholarPubMed
Deng, Z., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2019 Modeling segregation of polydisperse granular materials in developing and transient free-surface flows. AIChE J. 65 (3), 882893.CrossRefGoogle Scholar
Dolgunin, V.N. & Ukolov, A.A. 1995 Segregation modeling of particle rapid gravity flow. Powder Technol. 83 (2), 95103.CrossRefGoogle Scholar
Dsouza, P.V. & Nott, P.R. 2020 A non-local constitutive model for slow granular flow that incorporates dilatancy. J. Fluid Mech. 888, R3.CrossRefGoogle Scholar
Duan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2021 Modelling segregation of bidisperse granular mixtures varying simultaneously in size and density for free surface flows. J. Fluid Mech. 918, A20.CrossRefGoogle Scholar
Fan, Y. & Hill, K.M. 2015 Shear-induced segregation of particles by material density. Phys. Rev. E 92, 022211.CrossRefGoogle ScholarPubMed
Fan, Y., Jacob, K.V., Freireich, B. & Lueptow, R.M. 2017 Segregation of granular materials in bounded heap flow: a review. Powder Technol. 312, 6788.CrossRefGoogle Scholar
Fan, Y., Schlick, C.P., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2014 Modelling size segregation of granular materials: the roles of segregation, advection and diffusion. J. Fluid Mech. 741, 252279.CrossRefGoogle Scholar
Fry, A.M., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2019 Diffusion, mixing, and segregation in confined granular flows. AIChE J. 65 (3), 875881.CrossRefGoogle Scholar
GDR MiDi 2004 On dense granular flows. Eur. Phys. J. E 14 (4), 341365.CrossRefGoogle Scholar
Gillemot, K.A., Somfai, E. & Börzsönyi, T. 2017 Shear-driven segregation of dry granular materials with different friction coefficients. Soft Matt. 13, 415420.CrossRefGoogle ScholarPubMed
Gray, J.M.N.T. 2018 Particle segregation in dense granular flows. Annu. Rev. Fluid Mech. 50, 407433.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2011 Multi-component particle-size segregation in shallow granular avalanches. J. Fluid Mech. 678, 535588.CrossRefGoogle Scholar
Gray, J.M.N.T. & Ancey, C. 2015 Particle-size and -density segregation in granular free-surface flows. J. Fluid Mech. 779, 622668.CrossRefGoogle Scholar
Gray, J.M.N.T. & Chugunov, V.A. 2006 Particle-size segregation and diffusive remixing in shallow granular avalanches. J. Fluid Mech. 569, 365398.CrossRefGoogle Scholar
Gray, J.M.N.T. & Hutter, K. 1997 Pattern formation in granular avalanches. Contin. Mech. Thermodyn. 9 (6), 341345.CrossRefGoogle Scholar
Gray, J.M.N.T. & Thornton, A.R. 2005 A theory for particle size segregation in shallow granular free-surface flows. Proc. R. Soc. Lond. A 461 (2057), 14471473.Google Scholar
Heyman, J., Delannay, R., Tabuteau, H. & Valance, A. 2017 Compressibility regularizes the $\mu (I)$ rheology for dense granular flows. J. Fluid Mech. 830, 553568.CrossRefGoogle Scholar
Hill, K.M., Khakhar, D.V., Gilchrist, J.F., McCarthy, J.J. & Ottino, J.M. 1999 Segregation-driven organization in chaotic granular flows. Proc. Natl Acad. Sci. USA 96 (21), 1170111706.CrossRefGoogle ScholarPubMed
Hsiau, S.S. & Chen, W.C. 2002 Density effect of binary mixtures on the segregation process in a vertical shaker. Adv. Powder Technol. 13 (3), 301315.CrossRefGoogle Scholar
Jain, A., Metzger, M.J. & Glasser, B.J. 2013 Effect of particle size distribution on segregation in vibrated systems. Powder Technol. 237, 543553.CrossRefGoogle Scholar
Jain, N., Ottino, J.M. & Lueptow, R.M. 2005 Regimes of segregation and mixing in combined size and density granular systems: an experimental study. Granul. Matt. 7 (2), 6981.CrossRefGoogle Scholar
Jing, L., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2022 Drag force in granular shear flows: regimes, scaling laws and implications for segregation. J. Fluid Mech. 948, A24.CrossRefGoogle Scholar
Jones, R.P., Isner, A.B., Xiao, H., Ottino, J.M., Umbanhowar, P.B. & Lueptow, R.M. 2018 Asymmetric concentration dependence of segregation fluxes in granular flows. Phys. Rev. Fluids 3 (9), 094304.CrossRefGoogle Scholar
Jop, P., Forterre, Y. & Pouliquen, O. 2006 A constitutive law for dense granular flows. Nature 441 (7094), 727730.CrossRefGoogle ScholarPubMed
Kumar, A., Khakhar, D.V. & Tripathi, A. 2019 Theoretical calculation of the buoyancy force on a particle in flowing granular mixtures. Phys. Rev. E 100, 042909.CrossRefGoogle ScholarPubMed
Liao, C.C., Hsiau, S.S. & Nien, H.C. 2014 Density-driven spontaneous streak segregation patterns in a thin rotating drum. Phys. Rev. E 89, 062204.CrossRefGoogle Scholar
Liao, C.C., Hsiau, S.S. & Nien, H.C. 2015 Effects of density ratio, rotation speed, and fill level on density-induced granular streak segregation in a rotating drum. Powder Technol. 284, 514520.CrossRefGoogle Scholar
Lim, E.W.C. 2016 Density segregation of dry and wet granular mixtures in vibrated beds. Adv. Powder Technol. 27 (6), 24782488.CrossRefGoogle Scholar
Maione, R., De Richter, S.K., Mauviel, G. & Wild, G. 2015 DEM investigation of granular flow and binary mixture segregation in a rotating tumbler: influence of particle shape and internal baffles. Powder Technol. 286, 732739.CrossRefGoogle Scholar
Oshitani, J., Sugo, R., Mawatari, Y., Tsuji, T., Jiang, Z. & Franks, G.V. 2020 Dry separation of fine particulate sand mixture based on density-segregation in a vibro-fluidized bed. Adv. Powder Technol. 31 (9), 40824088.CrossRefGoogle Scholar
Patro, S., Prasad, M., Tripathi, A., Kumar, P. & Tripathi, A. 2021 Rheology of two-dimensional granular chute flows at high inertial numbers. Phys. Fluids 33 (11), 113321.CrossRefGoogle Scholar
Pereira, G.G. & Cleary, P.W. 2017 Segregation due to particle shape of a granular mixture in a slowly rotating tumbler. Granul. Matt. 19 (2), 23.CrossRefGoogle Scholar
Pereira, G.G., Tran, N. & Cleary, P.W. 2014 Segregation of combined size and density varying binary granular mixtures in a slowly rotating tumbler. Granul. Matt. 16 (5), 711732.CrossRefGoogle Scholar
Qiao, J., Duan, C., Dong, K., Wang, W., Jiang, H., Zhu, H. & Zhao, Y. 2021 DEM study of segregation degree and velocity of binary granular mixtures subject to vibration. Powder Technol. 382, 107117.CrossRefGoogle Scholar
Savage, S.B. 1993 Disorder, diffusion and structure formation in granular flows. Disorder and granular media (ed. A. Hansen & D. Bideau), pp. 255–285. Elsevier.Google Scholar
Savage, S.B. & Lun, C.K.K. 1988 Particle size segregation in inclined chute flow of dry cohesionless granular solids. J. Fluid Mech. 189, 311335.CrossRefGoogle Scholar
Schlick, C.P., Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2015 Granular segregation in circular tumblers: theoretical model and scaling laws. J. Fluid Mech. 765, 632652.CrossRefGoogle Scholar
Schlick, C.P., Isner, A.B., Freireich, B.J., Fan, Y., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2016 A continuum approach for predicting segregation in flowing polydisperse granular materials. J. Fluid Mech. 797, 95109.CrossRefGoogle Scholar
Shi, Q., Sun, G., Hou, M. & Lu, K. 2007 Density-driven segregation in vertically vibrated binary granular mixtures. Phys. Rev. E 75, 061302.CrossRefGoogle ScholarPubMed
Staron, L., Lagrée, P.-Y. & Popinet, S. 2014 Continuum simulation of the discharge of the granular silo. Eur. Phys. J. E 37 (1), 112.CrossRefGoogle ScholarPubMed
Tai, C.H., Hsiau, S.S. & Kruelle, C.A. 2010 Density segregation in a vertically vibrated granular bed. Powder Technol. 204 (2), 255262.CrossRefGoogle Scholar
Thornton, A.R., Gray, J.M.N.T. & Hogg, A.J. 2006 A three-phase mixture theory for particle size segregation in shallow granular free-surface flows. J. Fluid Mech. 550, 125.CrossRefGoogle Scholar
Thornton, A.R., Weinhart, T., Luding, S. & Bokhove, O. 2012 Modeling of particle size segregation: calibration using the discrete particle method. Intl J. Mod. Phys. C 23 (08), 1240014.CrossRefGoogle Scholar
Tirapelle, M., Santomaso, A.C., Richard, P. & Artoni, R. 2021 Experimental investigation and numerical modelling of density-driven segregation in an annular shear cell. Adv. Powder Technol. 32 (5), 13051317.CrossRefGoogle Scholar
Trewhela, T., Ancey, C. & Gray, J.M.N.T. 2021 An experimental scaling law for particle-size segregation in dense granular flows. J. Fluid Mech. 916, A55.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2011 a Numerical simulation of the sedimentation of a sphere in a sheared granular fluid: a granular Stokes experiment. Phys. Rev. Lett. 107 (10), 108001.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2011 b Rheology of binary granular mixtures in the dense flow regime. Phys. Fluids 23 (11), 113302.CrossRefGoogle Scholar
Tripathi, A. & Khakhar, D.V. 2013 Density difference-driven segregation in a dense granular flow. J. Fluid Mech. 717, 643669.CrossRefGoogle Scholar
Tripathi, A., Kumar, A., Nema, M. & Khakhar, D.V. 2021 Theory for size segregation in flowing granular mixtures based on computation of forces on a single large particle. Phys. Rev. E 103, L031301.CrossRefGoogle ScholarPubMed
Tunuguntla, D.R., Bokhove, O. & Thornton, A.R. 2014 A mixture theory for size and density segregation in shallow granular free-surface flows. J. Fluid Mech. 749, 99.CrossRefGoogle Scholar
Utter, B. & Behringer, R.P. 2004 Self-diffusion in dense granular shear flows. Phys. Rev. E 69 (3), 031308.CrossRefGoogle ScholarPubMed
van der Vaart, K., van Schrojenstein Lantman, M.P., Weinhart, T., Luding, S., Ancey, C. & Thornton, A.R. 2018 Segregation of large particles in dense granular flows suggests a granular Saffman effect. Phys. Rev. Fluids 3, 074303.CrossRefGoogle Scholar
Windows-Yule, C.R.K., Douglas, G.J.M. & Parker, D.J. 2015 Competition between geometrically induced and density-driven segregation mechanisms in vibrofluidized granular systems. Phys. Rev. E 91, 032205.CrossRefGoogle ScholarPubMed
Xiao, H., Fan, Y., Jacob, K.V., Umbanhowar, P.B., Kodam, M., Koch, J.F. & Lueptow, R.M. 2019 Continuum modeling of granular segregation during hopper discharge. Chem. Engng Sci. 193, 188204.CrossRefGoogle Scholar
Xiao, H., Umbanhowar, P.B., Ottino, J.M. & Lueptow, R.M. 2016 Modelling density segregation in flowing bidisperse granular materials. Proc. R. Soc. Lond. A 472 (2191), 20150856.Google Scholar
Yang, S.C. 2006 Density effect on mixing and segregation processes in a vibrated binary granular mixture. Powder Technol. 164 (2), 6574.CrossRefGoogle Scholar
Zhou, Y., Lagrée, P.-Y., Popinet, S., Ruyer, P & Aussillous, P. 2017 Experiments on, and discrete and continuum simulations of, the discharge of granular media from silos with a lateral orifice. J. Fluid Mech. 829, 459485.CrossRefGoogle Scholar