Skip to main content Accessibility help

On the shape of resolvent modes in wall-bounded turbulence

Published online by Cambridge University Press:  27 August 2019

Scott T. M. Dawson
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA Mechanical, Materials and Aerospace Engineering Department, Illinois Institute of Technology, Chicago, IL 60616, USA
Beverley J. McKeon
Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA 91125, USA
E-mail address:


This work develops a methodology for approximating the shape of leading resolvent modes for incompressible, quasi-parallel, shear-driven turbulent flows using prescribed analytic functions. We demonstrate that these functions, which arise from the consideration of wavepacket pseudoeigenmodes of simplified linear operators (Trefethen, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, 2005, pp. 3099–3122. The Royal Society), give an accurate approximation for the energetically dominant wall-normal vorticity component of a class of nominally wall-detached modes that are centred about the critical layer. We validate our method on a model operator related to the Squire equation, and show for this simplified case how wavepacket pseudomodes relate to truncated asymptotic expansions of Airy functions. Following the framework developed in McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336–382), we next apply a sequence of simplifications to the resolvent formulation of the Navier–Stokes equations to arrive at a scalar differential operator that is amenable to such analysis. The first simplification decomposes the resolvent operator into Orr–Sommerfeld and Squire suboperators, following Rosenberg & McKeon (Fluid Dyn. Res., vol. 51, 2019, 011401). The second simplification relates the leading resolvent response modes of the Orr–Sommerfeld suboperator to those of a simplified scalar differential operator – which is the Squire operator equipped with a non-standard inner product. This characterisation provides a mathematical framework for understanding the origin of leading resolvent mode shapes for the incompressible Navier–Stokes resolvent operator, and allows for rapid estimation of dominant resolvent mode characteristics without the need for operator discretisation or large numerical computations. We explore regions of validity for this method, and show that it can predict resolvent response mode shape (though not necessary the corresponding resolvent gain) over a wide range of spatial wavenumbers and temporal frequencies. In particular, we find that our method remains relatively accurate even when the modes have some amount of ‘attachment’ to the wall, and that that the region of validity contains the regions in parameter space where large-scale and very-large-scale motions typically reside. We relate these findings to classical lift-up and Orr amplification mechanisms in shear-driven flows.

JFM Papers
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.


Bamieh, B. & Dahleh, M. 2001 Energy amplification in channel flows with stochastic excitation. Phys. Fluids 13 (11), 32583269.10.1063/1.1398044CrossRefGoogle Scholar
Böberg, L. & Brösa, U. 1988 Onset of turbulence in a pipe. Z. Naturforsch. 43 (8–9), 697726.10.1515/zna-1988-8-901CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.10.1063/1.858386CrossRefGoogle Scholar
Cantwell, B. J. 1981 Organized motion in turbulent flow. Annu. Rev. Fluid Mech. 13 (1), 457515.10.1146/annurev.fl.13.010181.002325CrossRefGoogle Scholar
Chomaz, J. 2005 Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu. Rev. Fluid Mech. 37, 357392.10.1146/annurev.fluid.37.061903.175810CrossRefGoogle Scholar
Cossu, C., Pujals, G. & Depardon, S. 2009 Optimal transient growth and very large–scale structures in turbulent boundary layers. J. Fluid Mech. 619, 7994.10.1017/S0022112008004370CrossRefGoogle Scholar
Davies, E. B. 1999a Pseudo-spectra, the harmonic oscillator and complex resonances. Proc. R. Soc. Lond. A 455 (1982), 585599.10.1098/rspa.1999.0325CrossRefGoogle Scholar
Davies, E. B. 1999b Semi-classical states for non-self-adjoint Schrödinger operators. Commun. Math. Phys. 200 (1), 3541.10.1007/s002200050521CrossRefGoogle Scholar
Del Alamo, J. C. & Jimenez, J. 2006 Linear energy amplification in turbulent channels. J. Fluid Mech. 559, 205213.10.1017/S0022112006000607CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 2004 Hydrodynamic Stability. Cambridge University Press.10.1017/CBO9780511616938CrossRefGoogle Scholar
Edstrand, A. M., Schmid, P. J., Taira, K. & Cattafesta, L. N. 2018 A parallel stability analysis of a trailing vortex wake. J. Fluid Mech. 837, 858895.10.1017/jfm.2017.866CrossRefGoogle Scholar
Farrell, B. & Ioannou, J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids 5 (11), 26002609.10.1063/1.858894CrossRefGoogle Scholar
Guala, M., Hommema, S. E. & Adrian, R. J. 2006 Large-scale and very-large-scale motions in turbulent pipe flow. J. Fluid Mech. 554, 521542.10.1017/S0022112006008871CrossRefGoogle Scholar
Gustavsson, L. H. 1986 Excitation of direct resonances in plane Poiseuille flow. Stud. Appl. Maths 75 (3), 227248.10.1002/sapm1986753227CrossRefGoogle Scholar
Hack, M. J. P. & Moin, P. 2017 Algebraic disturbance growth by interaction of Orr and lift-up mechanisms. J. Fluid Mech. 829, 112126.10.1017/jfm.2017.557CrossRefGoogle Scholar
Head, M. R. & Bandyopadhyay, P. 1981 New aspects of turbulent boundary-layer structure. J. Fluid Mech. 107, 297338.10.1017/S0022112081001791CrossRefGoogle Scholar
Hutchins, N. & Marusic, I. 2007 Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 128.10.1017/S0022112006003946CrossRefGoogle Scholar
Hwang, Y. & Cossu, C. 2010 Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow. J. Fluid Mech. 664, 5173.10.1017/S0022112010003629CrossRefGoogle Scholar
Jiménez, J. 2013 How linear is wall-bounded turbulence? Phys. Fluids 25 (11), 110814.10.1063/1.4819081CrossRefGoogle Scholar
Jiménez, J. 2018 Coherent structures in wall-bounded turbulence. J. Fluid Mech. 842, P1.10.1017/jfm.2018.144CrossRefGoogle Scholar
Jovanović, M. R. & Bamieh, B. 2005 Componentwise energy amplification in channel flows. J. Fluid Mech. 534, 145183.10.1017/S0022112005004295CrossRefGoogle Scholar
Kim, K. C. & Adrian, R. J. 1999 Very large-scale motion in the outer layer. Phys. Fluids 11 (2), 417422.10.1063/1.869889CrossRefGoogle Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30 (4), 741773.10.1017/S0022112067001740CrossRefGoogle Scholar
Kovasznay, L. S. G., Kibens, V. & Blackwelder, R. F. 1970 Large-scale motion in the intermittent region of a turbulent boundary layer. J. Fluid Mech. 41 (2), 283325.10.1017/S0022112070000629CrossRefGoogle Scholar
Landahl, M. T. 1975 Wave breakdown and turbulence. SIAM J. Appl. Maths 28 (4), 735756.10.1137/0128061CrossRefGoogle Scholar
Landahl, M. T. 1980 A note on an algebraic instability of inviscid parallel shear flows. J. Fluid Mech. 98 (2), 243251.10.1017/S0022112080000122CrossRefGoogle Scholar
Leonard, A. 2016 Approximate solutions to the linearized Navier–Stokes equations for incompressible channel flow. In Proceedings of the 20th Australasian Fluid Mechanics Conference, Australasian Fluid Mechanics Society.Google Scholar
Mao, X. & Sherwin, S. J. 2011 Continuous spectra of the batchelor vortex. J. Fluid Mech. 681, 123.10.1017/jfm.2011.194CrossRefGoogle Scholar
McKeon, B. J. 2017 The engine behind (wall) turbulence: perspectives on scale interactions. J. Fluid Mech. 817, P1.10.1017/jfm.2017.115CrossRefGoogle Scholar
McKeon, B. J. & Sharma, A. S. 2010 A critical-layer framework for turbulent pipe flow. J. Fluid Mech. 658, 336382.10.1017/S002211201000176XCrossRefGoogle Scholar
Moarref, R., Sharma, A. S., Tropp, J. A. & McKeon, B. J. 2013 Model-based scaling of the streamwise energy density in high-Reynolds-number turbulent channels. J. Fluid Mech. 734, 275316.10.1017/jfm.2013.457CrossRefGoogle Scholar
Monty, J. P., Hutchins, N., Ng, H. C. H., Marusic, I. & Chong, M. S. 2009 A comparison of turbulent pipe, channel and boundary layer flows. J. Fluid Mech. 632, 431442.10.1017/S0022112009007423CrossRefGoogle Scholar
Obrist, D. & Schmid, P. J. 2010 Algebraically decaying modes and wave packet pseudo-modes in swept Hiemenz flow. J. Fluid Mech. 643, 309332.10.1017/S0022112009992114CrossRefGoogle Scholar
Obrist, D. & Schmid, P. J. 2011 Algebraically diverging modes upstream of a swept bluff body. J. Fluid Mech. 683, 346356.10.1017/jfm.2011.269CrossRefGoogle Scholar
Olver, F. W. J. 2014 Asymptotics and Special Functions. Academic Press.Google Scholar
Orr, W. M’F. 1907 The stability or instability of the steady motions of a perfect liquid and of a viscous liquid. Part II: A viscous liquid. In Proceedings of the Royal Irish Academy. Section A: Mathematical and Physical Sciences, pp. 69138. JSTOR.Google Scholar
Perot, B. & Moin, P. 1996 A new approach to turbulence modeling. In Proceedings of the Center for Turbulence Research Summer Program, Stanforn University.Google Scholar
Reddy, S. C. & Henningson, D. S. 1993 Energy growth in viscous channel flows. J. Fluid Mech. 252, 209238.10.1017/S0022112093003738CrossRefGoogle Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53 (1), 1547.10.1137/0153002CrossRefGoogle Scholar
Reynolds, W. C. & Tiederman, W. G. 1967 Stability of turbulent channel flow, with application to Malkus’s theory. J. Fluid Mech. 27 (2), 253272.10.1017/S0022112067000308CrossRefGoogle Scholar
Robinson, S. K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23 (1), 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Rosenberg, K. & McKeon, B. J. 2019 Efficient representation of exact coherent states of the Navier–Stokes equations using resolvent analysis. Fluid Dyn. Res. 51, 011401.Google Scholar
Saxton-Fox, T. & McKeon, B. J. 2017 Coherent structures, uniform momentum zones and the streamwise energy spectrum in wall-bounded turbulent flows. J. Fluid Mech. 826, R6.10.1017/jfm.2017.493CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.10.1146/annurev.fluid.38.050304.092139CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 1994 Optimal energy density growth in Hagen–Poiseuille flow. J. Fluid Mech. 277, 197225.10.1017/S0022112094002739CrossRefGoogle Scholar
Schmid, P. J. & Henningson, D. S. 2012 Stability and Transition in Shear Flows. Springer Science & Business Media.Google Scholar
Schoppa, W. & Hussain, F. 2002 Coherent structure generation in near-wall turbulence. J. Fluid Mech. 453, 57108.10.1017/S002211200100667XCrossRefGoogle Scholar
Sharma, A. S. & McKeon, B. J. 2013 On coherent structure in wall turbulence. J. Fluid Mech. 728, 196238.10.1017/jfm.2013.286CrossRefGoogle Scholar
Sharma, A. S., Moarref, R. & McKeon, B. J. 2017 Scaling and interaction of self-similar modes in models of high Reynolds number wall turbulence. Phil. Trans. R. Soc. A 375 (2089), 20160089.Google ScholarPubMed
Smits, A. J., McKeon, B. J. & Marusic, I. 2011 High–Reynolds number wall turbulence. Annu. Rev. Fluid Mech. 43, 353375.10.1146/annurev-fluid-122109-160753CrossRefGoogle Scholar
Symon, S., Rosenberg, K., Dawson, S. T. M. & McKeon, B. J. 2018 Non-normality and classification of amplification mechanisms in stability and resolvent analysis. Phys. Rev. Fluids 3 (5), 053902.10.1103/PhysRevFluids.3.053902CrossRefGoogle Scholar
Theodorsen, T. 1952 Mechanisms of turbulence. In Proceedings of the 2nd Midwestern Conference on Fluid Mechanics, 1952.Google Scholar
Trefethen, L. N. 2005 Wave packet pseudomodes of variable coefficient differential operators. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 461, pp. 30993122. The Royal Society.Google Scholar
Trefethen, L. N. & Chapman, S. J. 2004 Wave packet pseudomodes of twisted Toeplitz matrices. Commun. Pure Appl. Maths 57 (9), 12331264.10.1002/cpa.20034CrossRefGoogle Scholar
Trefethen, L. N. & Embree, M. 2005 Spectra and Pseudospectra: The Behavior of Nonnormal Matrices and Operators. Princeton University Press.Google Scholar
Trefethen, L. N., Trefethen, A. E., Reddy, S. C. & Driscoll, T. A. 1993 Hydrodynamic stability without eigenvalues. Science 261 (5121), 578584.10.1126/science.261.5121.578CrossRefGoogle ScholarPubMed
Vallée, O. & Soares, M. 2010 Airy Functions and Applications to Physics. World Scientific Publishing Company.10.1142/p709CrossRefGoogle Scholar
Weideman, J. A. & Reddy, S. C. 2000 A Matlab differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.10.1145/365723.365727CrossRefGoogle Scholar
Wu, J.-Z., Zhou, Y. & Wu, J.-M.1996 Reduced stress tensor and dissipation and the transport of Lamb vector. Tech. Rep. 96-21. ICASE.Google Scholar
Wu, X., Moin, P., Wallace, J. M., Skarda, J., Lozano-Durán, A. & Hickey, J.-P. 2017 Transitional–turbulent spots and turbulent–turbulent spots in boundary layers. Proc. Natl Acad. Sci. USA E5292E5299.10.1073/pnas.1704671114CrossRefGoogle ScholarPubMed
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. 1999 Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353396.10.1017/S002211209900467XCrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 18
Total number of PDF views: 298 *
View data table for this chart

* Views captured on Cambridge Core between 27th August 2019 - 27th January 2021. This data will be updated every 24 hours.

Hostname: page-component-898fc554b-wphb9 Total loading time: 0.287 Render date: 2021-01-27T20:43:14.475Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

On the shape of resolvent modes in wall-bounded turbulence
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

On the shape of resolvent modes in wall-bounded turbulence
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

On the shape of resolvent modes in wall-bounded turbulence
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *