Skip to main content Accessibility help
×
Home
Hostname: page-component-7f7b94f6bd-vvt5l Total loading time: 0.297 Render date: 2022-06-30T14:19:48.333Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus)

Published online by Cambridge University Press:  20 December 2019

Sehyeong Oh
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul08826, Republic of Korea
Boogeon Lee
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul08826, Republic of Korea
Hyungmin Park
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul08826, Republic of Korea Institute of Advanced Machines and Design, Seoul National University, Seoul08826, Republic of Korea
Haecheon Choi*
Affiliation:
Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul08826, Republic of Korea Institute of Advanced Machines and Design, Seoul National University, Seoul08826, Republic of Korea
Sun-Tae Kim
Affiliation:
Agency for Defense Development, Daejeon34186, Republic of Korea
*
Email address for correspondence: choi@snu.ac.kr

Abstract

The aerodynamic characteristics of a hovering rhinoceros beetle are numerically and theoretically investigated. Its wing kinematics is measured using high speed cameras and used for numerical simulations of flow around a flapping rhinoceros beetle in hovering flight. The numerical results show that the aerodynamic forces generated (especially for lift) and power required by the hind wing during a quasi-periodic state are quite different from those during the first stroke. This indicates that the wing–wake interaction significantly affects the aerodynamic performance of the hind wing during the quasi-periodic state. Also, twisting of the hind wing along the wing span direction does not contribute much to total force generation as compared to that of the flat wing, and the role of elytron and body on the aerodynamic performance is quite small, at least for the present hovering flight. Based on a previous model (Wang et al., J. Fluid Mech., vol. 800, 2016, pp. 688–719), we suggest an improved predictive aerodynamic model without any ad hoc model constants for a rigid and flat hind wing by considering the effect of the wing–wake interaction in hovering flight. In this model, we treat the wake as a steady or unsteady non-uniform downwash motion and obtain its magnitude by combining a quasi-steady blade element theory with an inviscid momentum theory. The lift and drag forces and aerodynamic power consumption predicted by this model are in excellent agreement with those obtained from numerical simulations.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersen, A., Pesavento, U. & Wang, Z. J. 2005 Unsteady aerodynamics of fluttering and tumbling plates. J. Fluid Mech. 541, 6590.CrossRefGoogle Scholar
Ansari, S. A., Zbikowski, R. & Knowles, K. 2006a Aerodynamic modelling of insect-like flapping flight for micro air vehicles. Prog. Aerosp. Sci. 42, 129172.CrossRefGoogle Scholar
Ansari, S. A., Zbikowski, R. & Knowles, K. 2006b Non-linear unsteady aerodynamic model for insect-like flapping wings in the hover. Part 1: methodology and analysis. Proc. Inst. Mech. Engrs 220, 6183.CrossRefGoogle Scholar
Aono, H., Liang, F. & Liu, H. 2008 Near- and far-field aerodynamics in insect hovering flight: an integrated computational study. J. Expl Biol. 211, 239257.CrossRefGoogle Scholar
Berman, G. J. & Wang, Z. J. 2007 Energy-minimizing kinematics in hovering insect flight. J. Fluid Mech. 582, 153168.CrossRefGoogle Scholar
Birch, J. M. & Dickinson, M. H. 2003 The influence of wingwake interactions on the production of aerodynamic forces in flapping flight. J. Expl Biol. 206, 22572272.CrossRefGoogle ScholarPubMed
Bomphrey, R. J., Nakata, T., Phillips, N. & Walker, S. M. 2017 Smart wing rotation and trailing-edge vortices enable high frequency mosquito. Nature 544, 9295.CrossRefGoogle ScholarPubMed
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. 1999 Wing rotation and the aerodynamic basis of insect flight. Science 284, 19541960.CrossRefGoogle ScholarPubMed
Dudley, R. & Ellington, C. P. 1990 Mechanics of forward flight in bumblebee II. Quasi-steady lift and power requirements. J. Expl Biol. 148, 5388.Google Scholar
Ellington, C. P. 1984a The aerodynamics of hovering insect flight: III. Kinematics. Phil. Trans. R. Soc. Lond. B 305, 4178.CrossRefGoogle Scholar
Ellington, C. P. 1984b The aerodynamics of hovering insect flight. V. A vortex theory. Phil. Trans. R. Soc. Lond. B 305, 115144.CrossRefGoogle Scholar
Ellington, C. P. 1984c The aerodynamics of hovering insect flight. VI. Lift and power requirements. Phil. Trans. R. Soc. Lond. B 305, 145181.CrossRefGoogle Scholar
Ellington, C. P. 1991 Aerodynamics and the origin of insect flight. Adv. Insect Physiol. 23, 171210.CrossRefGoogle Scholar
Fry, S. N., Sayaman, R. & Dickinson, M. H. 2005 The aerodynamics of hovering flight in Drosophila. J. Expl Biol. 208, 23032318.CrossRefGoogle ScholarPubMed
Han, J.-S., Nguyen, A. T. & Han, J.-H. 2019 Aerodynamic characteristics of flapping wings under steady lateral inflow. J. Fluid Mech. 870, 735759.CrossRefGoogle Scholar
Hatze, H. 1988 High-precision three-dimensional photogrammetric calibration and object space reconstruction using a modified DLT-approach. J. Biomech. 21, 533538.CrossRefGoogle ScholarPubMed
Hedrick, T. L. 2008 Software techniques for two- and three-dimensional kinematic measurements of biological and biomimetic systems. Bioinspir. Biomim. 3, 034001.CrossRefGoogle ScholarPubMed
Ho, S., Nassef, H., Pornsinsirirak, N., Tai, Y. C. & Ho, C. M. 2003 Unsteady aerodynamics and flow control for flapping wing flyers. Prog. Aerosp. Sci. 39, 635681.CrossRefGoogle Scholar
Jensen, M. 1956 Biology and physics of locust flight. III. The aerodynamics of locust flight. Phil. Trans. R. Soc. Lond. B 239, 511552.Google Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jin, T., Goo, N. S., Woo, S.-C. & Park, H. C. 2009 Use of a digital image correlation technique for measuring the material properties of beetle wing. J. Bionic Engng 6, 224231.CrossRefGoogle Scholar
Johnson, W. 1994 Helicopter Theory. Dover.Google Scholar
Kim, J., Kim, D. & Choi, H. 2001 An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132150.CrossRefGoogle Scholar
Kim, J., Kweon, J. & Choi, H. 2015 Sectional lift coefficient of a rotating wing at low Reynolds number. J. Mech. Sci. Technol. 29, 47754781.CrossRefGoogle Scholar
Kim, W., Lee, I. & Choi, H. 2018 A weak-coupling immersed boundary method for fluid-structure interaction with low density ratio of solid to fluid. J. Comput. Phys. 359, 296311.CrossRefGoogle Scholar
Kweon, J. & Choi, H. 2010 Sectional lift coefficient of flapping wing in hovering motion. Phys. Fluids 22, 071703.CrossRefGoogle Scholar
Le, T. Q., Truong, T. V., Park, S. H., Truong, T. Q., Ko, J. H., Park, H. C. & Byun, D. 2013 Improvement of the aerodynamic performance by wing flexibility and elytra-hind wing interaction of a beetle during forward flight. J. R. Soc. Interface 10, 20130312.CrossRefGoogle ScholarPubMed
Lee, B., Park, H. & Kim, S.-T. 2015a Three-dimensional wing behaviors of a rhinoceros beetle during takeoff flights. J. Mech. Sci. Technol. 29, 52815288.CrossRefGoogle Scholar
Lee, J., Choi, H. & Kim, H.-Y. 2015b A scaling law for the lift of hovering insects. J. Fluid Mech. 782, 479490.CrossRefGoogle Scholar
Lee, J., Kim, J., Choi, H. & Yang, K.-S. 2011 Sources of spurious force oscillations from an immersed boundary method for moving-body problems. J. Comput. Phys. 230, 26772695.CrossRefGoogle Scholar
Leishman, J. G. 2006 Principles of Helicopter Aerodynamics. Cambridge University Press.Google Scholar
Lentink, D. & Dickinson, M. H. 2009 Rotational accelerations stabilize leading edge vortices on revolving fly wings. J. Expl Biol. 212, 27052719.CrossRefGoogle ScholarPubMed
Lissaman, P. B. S. 1983 Low-Reynolds-number airfoils. Annu. Rev. Fluid Mech. 15, 223239.CrossRefGoogle Scholar
Liu, G., Dong, H. & Li, C. 2016 Vortex dynamics and new lift enhancement mechanism of wing–body interaction in insect forward flight. J. Fluid Mech. 795, 634651.CrossRefGoogle Scholar
Meng, X. G., Xu, L. & Sun, M. 2011 Aerodynamic effects of corrugation in flapping insect wings in hovering flight. J. Expl Biol. 214, 432444.CrossRefGoogle ScholarPubMed
Messiter, A. F. 1970 Boundary-layer flow near the trailing edge of a flat plate. SIAM J. Appl. Maths 18, 241257.CrossRefGoogle Scholar
Nakata, T., Liu, H. & Bomphrey, R. J. 2015 A CFD-informed quasi-steady model of flapping-wing aerodynamics. J. Fluid Mech. 783, 323343.CrossRefGoogle ScholarPubMed
Oh, S. & Choi, H. 2018 A predictive model of the drag coefficient for a revolving wing at low Reynolds number. Bioinspir. Biomim. 13, 054001.CrossRefGoogle ScholarPubMed
Osborne, M. F. M. 1951 Aerodynamics of flapping flight with application to insects. J. Expl Biol. 28, 221245.Google ScholarPubMed
Pennycuick, C. J. 2008 Modelling the Flying Bird. Academic Press..Google Scholar
Phan, H. V., Truong, Q. T. & Park, H. C. 2017 An experimental comparative study of the efficiency of twisted and flat flapping wings during hovering flight. Bioinspir. Biomim. 12, 036009.CrossRefGoogle ScholarPubMed
Poelma, C., Dickson, W. B. & Dickinson, M. H. 2006 Time-resolved reconstruction of the full velocity field around a dynamically-scaled flapping wing. Exp. Fluids 41, 213225.CrossRefGoogle Scholar
Rayner, J. M. V. 1979 A vortex theory of animal flight. Part 1. The vortex wake of a hovering animal. J. Fluid Mech. 91, 697730.CrossRefGoogle Scholar
Sane, S. P. & Dickinson, M. H. 2002 The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. J. Expl Biol. 205, 10871096.Google Scholar
Schlichting, H. & Truckenbrodt, E. A. 1979 Aerodynamics of the Airplane. McGraw-Hill.Google Scholar
Schurer, F. 1968 A note on interpolating periodic quintic splines with equally spaced nodes. J. Approx. Theory 1, 493500.CrossRefGoogle Scholar
Shyy, W., Aono, H., Kang, C.-K. & Liu, H. 2013 An Introduction to Flapping Wing Aerodynamics. Cambridge University Press.CrossRefGoogle Scholar
Shyy, W., Lian, Y., Tang, J., Viieru, D. & Liu, H. 2008 Aerodynamics of Low Reynolds Number Flyers. Cambridge University Press.CrossRefGoogle Scholar
Siekmann, J. 1963 On a pulsating jet from the end of a tube, with application to the propulsion of certain aquatic animals. J. Fluid Mech. 15, 399418.CrossRefGoogle Scholar
Spedding, G. R. & Lissaman, P. B. S. 1998 Technical aspects of microscale flight systems. J. Avian Biol. 29, 458468.CrossRefGoogle Scholar
Stewartson, K. 1968 On the flow near the trailing edge of a flat plate. Proc. R. Soc. Lond. A 306, 275290.Google Scholar
Sun, M. & Du, G. 2003 Lift and power requirements of hovering insect flight. Acta Mechanica Sin. 19, 458469.Google Scholar
Sun, M. & Tang, J. 2002 Lift and power requirements of hovering flight in Drosophila virilis. J. Expl Biol. 205, 24132427.Google ScholarPubMed
Taha, H. E., Hajj, M. R. & Beran, P. S. 2014 State-space representation of the unsteady aerodynamics of flapping flight. Aerosp. Sci. Technol. 34, 111.CrossRefGoogle Scholar
Truong, Q. T., Nguyen, Q. V., Truong, V. T., Park, H. C., Byun, D. Y. & Goo, N. S. 2011 A modified blade element theory for estimation of forces generated by a beetle-mimicking flapping wing system. Bioinspir. Biomim. 6, 036008.CrossRefGoogle ScholarPubMed
Truong, T. Q., Phan, V. H., Park, H. C. & Ko, J. H. 2013a Effect of wing twisting on aerodynamic performance of flapping wing system. AIAA J. 51, 16121620.CrossRefGoogle Scholar
Truong, T. V., Kim, J., Kim, M. J., Park, H. C., Yoon, K. J. & Byun, D. 2013b Flow structures around a flapping wing considering ground effect. Exp. Fluids 54, 1575.CrossRefGoogle Scholar
Truong, T. V., Le, T. Q., Park, H. C. & Byun, D. 2017 Experimental and numerical studies of beetle-inspired flapping wing in hovering flight. Bioinspir. Biomim. 12, 036012.Google ScholarPubMed
Usherwood, J. R. & Ellington, C. P. 2002 The aerodynamics of revolving wings I. Model hawkmoth. J. Expl Biol. 205, 15471564.Google ScholarPubMed
Usherwood, J. R. & Lehmann, F.-O. 2008 Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. J. R. Soc. Interface 5, 13031307.CrossRefGoogle ScholarPubMed
Vogel, S. 1967 Flight in Drosophila. II. Variations in stroke parameters and wing contours. J. Expl Biol. 46, 383392.Google Scholar
Wagner, H. 1925 Über die entstehung des dynamischen auftriebes von tragflügeln. Z. Angew. Math. Mech. 5, 1735.CrossRefGoogle Scholar
Wan, H., Dong, H. & Gai, K. 2015 Computational investigation of cicada aerodynamics in forward flight. J. R. Soc. Interface 12, 20141116.CrossRefGoogle ScholarPubMed
Wang, Q., Goosen, J. F. L. & van Keulen, F. 2016 A predictive quasi-steady model of aerodynamic loads of flapping wings. J. Fluid Mech. 800, 688719.CrossRefGoogle Scholar
Wang, Z. J., Birch, J. M. & Dickinson, M. H. 2004 Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations versus robotic wing experiments. J. Expl Biol. 207, 449460.CrossRefGoogle Scholar
Whitney, J. P. & Wood, R. J. 2010 Aeromechanics of passive rotation in flapping flight. J. Fluid Mech. 660, 197220.CrossRefGoogle Scholar
Willmott, A. P. & Ellington, C. P. 1997 The mechanics of flight in the hawkmoth Manduca sexta I. Kinematics of hovering and forward flight. J. Expl Biol. 200, 27052722.Google ScholarPubMed
Willmott, A. P., Ellington, C. P. & Thomas, A. L. R. 1997 Flow visualization and unsteady aerodynamics in the flight of the hawkmoth Manduca sexta. Phil. Trans. R. Soc. Lond. B 352, 303316.CrossRefGoogle Scholar
Xia, X. & Mohseni, K. 2013 Lift evaluation of a two-dimensional pitching flat plate. Phys. Fluids 25, 091901.CrossRefGoogle Scholar
Zheng, L., Hedrick, T. L. & Mittal, R. 2013 A multi-fidelity modelling approach for evaluation and optimization of wing stroke aerodynamics in flapping flight. J. Fluid Mech. 721, 118154.CrossRefGoogle Scholar
Supplementary material: File

Oh et al. supplementary material

Oh et al. supplementary material

Download Oh et al. supplementary material(File)
File 69 KB
8
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus)
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus)
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

A numerical and theoretical study of the aerodynamic performance of a hovering rhinoceros beetle (Trypoxylus dichotomus)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *