Skip to main content Accessibility help
×
Home

Mechanisms for generating coherent packets of hairpin vortices in channel flow

Published online by Cambridge University Press:  25 May 1999


J. ZHOU
Affiliation:
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801, USA
R. J. ADRIAN
Affiliation:
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801, USA
S. BALACHANDAR
Affiliation:
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801, USA
T. M. KENDALL
Affiliation:
Department of Theoretical and Applied Mechanics, University of Illinois, Urbana, Illinois 61801, USA Present address: Ballistic Research Laboratory, US Army, Aberdeen Proving Grounds, MD, USA.

Abstract

The evolution of a single hairpin vortex-like structure in the mean turbulent field of a low-Reynolds-number channel flow is studied by direct numerical simulation. The structure of the initial three-dimensional vortex is extracted from the two-point spatial correlation of the velocity field by linear stochastic estimation given a second-quadrant ejection event vector. Initial vortices having vorticity that is weak relative to the mean vorticity evolve gradually into omega-shaped vortices that persist for long times and decay slowly. As reported in Zhou, Adrian & Balachandar (1996), initial vortices that exceed a threshold strength relative to the mean flow generate new hairpin vortices upstream of the primary vortex. The detailed mechanisms for this upstream process are determined, and they are generally similar to the mechanisms proposed by Smith et al. (1991), with some notable differences in the details. It has also been found that new hairpins generate downstream of the primary hairpin, thereby forming, together with the upstream hairpins, a coherent packet of hairpins that propagate coherently. This is consistent with the experimental observations of Meinhart & Adrian (1995). The possibility of autogeneration above a critical threshold implies that hairpin vortices in fully turbulent fields may occur singly, but they more often occur in packets. The hairpins also generate quasi-streamwise vortices to the side of the primary hairpin legs. This mechanism bears many similarities to the mechanisms found by Brooke & Hanratty (1993) and Bernard, Thomas & Handler (1993). It provides a means by which new quasi-streamwise vortices, and, subsequently, new hairpin vortices can populate the near-wall layer.


Type
Research Article
Copyright
© 1999 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 46
Total number of PDF views: 2759 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 5th December 2020. This data will be updated every 24 hours.


Hostname: page-component-b4dcdd7-zsvsw Total loading time: 0.276 Render date: 2020-12-05T05:37:54.337Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Sat Dec 05 2020 05:00:21 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Mechanisms for generating coherent packets of hairpin vortices in channel flow
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Mechanisms for generating coherent packets of hairpin vortices in channel flow
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Mechanisms for generating coherent packets of hairpin vortices in channel flow
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *