Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-xbbwl Total loading time: 2.569 Render date: 2021-02-26T01:46:49.850Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow

Published online by Cambridge University Press:  18 March 2019

B. H. Burgess
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
D. G. Dritschel
Affiliation:
School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS, UK
Corresponding
E-mail address:

Abstract

We present a scaling theory that links the frequency of long frontal waves to the kinetic energy decay rate and inverse transfer of potential energy in freely evolving equivalent barotropic turbulence. The flow energy is predominantly potential, and the streamfunction makes the dominant contribution to potential vorticity (PV) over most of the domain, except near PV fronts of width $O(L_{D})$ , where $L_{D}$ is the Rossby deformation length. These fronts bound large vortices within which PV is well-mixed and arranged into a staircase structure. The jets collocated with the fronts support long-wave undulations, which facilitate collisions and mergers between the mixed regions, implicating the frontal dynamics in the growth of potential-energy-containing flow features. Assuming the mixed regions grow self-similarly in time and using the dispersion relation for long frontal waves (Nycander et al., Phys. Fluids A, vol. 5, 1993, pp. 1089–1091) we predict that the total frontal length and kinetic energy decay like $t^{-1/3}$ , while the length scale of the staircase vortices grows like $t^{1/3}$ . High-resolution simulations confirm our predictions.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Arbic, B. K. & Flierl, G. R. 2003 Coherent vortices and kinetic energy ribbons in asymptotic, quasi two-dimensional f-plane turbulence. Phys. Fluids 15, 21772189.CrossRefGoogle Scholar
Boffetta, G., De Lillo, F. & Musacchio, S. 2002 Inverse cascade in Charney–Hasegawa–Mima turbulence. Europhys. Lett. 59, 687693.CrossRefGoogle Scholar
Burgess, B. H., Dritschel, D. G. & Scott, R. K. 2017 Extended scale invariance in the vortices of freely evolving two-dimensional turbulence. Phys. Rev. Fluids 2, 114702.CrossRefGoogle Scholar
Dritschel, D. G. & Fontane, J. 2010 The combined Lagrangian advection method. J. Comput. Phys. 229, 54085417.CrossRefGoogle Scholar
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65, 855874.CrossRefGoogle Scholar
Dritschel, D. G. & Scott, R. K. 2011 Jet sharpening by turbulent mixing. Phil. Trans. R. Soc. Lond. 369, 754770.CrossRefGoogle ScholarPubMed
Dritschel, D. G., Scott, R. K., Macaskill, C., Gottwald, G. A. & Tran, C. V. 2008 Unifying scaling theory for vortex dynamics in two-dimensional turbulence. Phys. Rev. Lett. 101, 094501.CrossRefGoogle ScholarPubMed
Dunkerton, T. J. & Scott, R. K. 2008 A barotropic model of the angular momentum-conserving potential vorticity staircase in spherical geometry. J. Atmos. Sci. 65, 11051136.CrossRefGoogle Scholar
Hasegawa, A. & Mima, K. 1978 Pseudo-three-dimensional turbulence in a magnetized nonuniform plasma. Phys. Fluids 21, 8792.CrossRefGoogle Scholar
Iwayama, T., Shepherd, T. G. & Watanabe, T. 2002 An ‘ideal’ form of decaying two-dimensional turbulence. J. Fluid Mech. 456, 183198.CrossRefGoogle Scholar
Larichev, V. D. & McWilliams, J. C. 1991 Weakly decaying turbulence in an equivalent barotropic fluid. Phys. Fluids A 3, 938950.CrossRefGoogle Scholar
McIntyre, M. E. 1982 How well do we understand the dynamics of stratospheric warmings? J. Met. Soc. Japan 60, 3765.Google Scholar
Nycander, J., Dritschel, D. G. & Sutyrin, G. G. 1993 The dynamics of long frontal waves in the shallow-water equations. Phys. Fluids A 5, 10891091.CrossRefGoogle Scholar
Pedlosky, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.CrossRefGoogle Scholar
Płotka, H. & Dritschel, D. G. 2012 Quasi-geostrophic shallow-water vortex-patch equilibria and their stability. Geophys. Astrophys. Fluid Dyn. 106, 574595.CrossRefGoogle Scholar
Scott, R. K. & Dritschel, D. G. 2018 Zonal jet formation by potential vorticity mixing at large and small scales. In Zonal Jets (ed. Galperin, B. & Read, P. L.), Cambridge University Press.Google Scholar
Tran, C. V. & Dritschel, D. G. 2006 Impeded inverse energy transfer in the Charney–Hasegawa–Mima model of quasi-geostrophic flows. J. Fluid Mech. 551, 435443.CrossRefGoogle Scholar

Burgess and Dritschel supplementary movie 1

Kinetic energy density field at times $t = 110 \ 000 - 190 \ 000$.

Video 9 MB

Burgess and Dritschel supplementary movie 2

Potential vorticity field at times $t = 110 \ 000 - 190 \ 000$.

Video 2 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 10
Total number of PDF views: 158 *
View data table for this chart

* Views captured on Cambridge Core between 18th March 2019 - 26th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Long frontal waves and dynamic scaling in freely evolving equivalent barotropic flow
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *