Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-06-24T03:24:12.445Z Has data issue: false hasContentIssue false

Formation and evolution of laminar thermal structures: correlation to the thermal boundary layer and effects of heating time

Published online by Cambridge University Press:  08 April 2024

Pei-Jiang Qin
Affiliation:
School of Astronautics, Harbin Institute of Technology, Harbin 150001, PR China Department of Mechanics and Aerospace Engineering and Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China
Yu-Yang Hou
Affiliation:
Department of Mechanics and Aerospace Engineering and Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China
Ji-Dong He
Affiliation:
Department of Mechanics and Aerospace Engineering and Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
Ping Wei
Affiliation:
School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai 200092, PR China
Shi-Di Huang*
Affiliation:
Department of Mechanics and Aerospace Engineering and Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology, Shenzhen 518055, PR China Guangdong Provincial Key Laboratory of Turbulence Research and Applications, Southern University of Science and Technology, Shenzhen 518055, PR China
*
Email address for correspondence: huangsd@sustech.edu.cn

Abstract

We report an experimental study of the formation and evolution of laminar thermal structures generated by a small heat source, with a focus on their correlation to the thermal boundary layer and effects of heating time $t_{heat}$. The experiments are performed over the flux Rayleigh number ($Ra_f$) range $2.1\times 10^6 \leq Ra_f \leq 3.6\times 10^{7}$ and the Prandtl number ($Pr$) range $28.6 \leq Pr \leq 904.7$. The corresponding Rayleigh number ($Ra= t_{heat}\,Ra_{f}/\tau _0\,Pr$) range is $900 \leq Ra \leq 4\times 10^{4}$, where $\tau _0$ is a diffusion time scale. For thermal structures generated by continuous heating (i.e. starting plumes), their formation process exists three characteristic times that are well reflected by changes in the thermal boundary layer thickness. These characteristic times, denoted as $t_{emit}$, $t_{recover}$ and $t_{static}$, correspond to the moments when the plume emission begins and completes, and when the thermal boundary layer becomes quasi-static, respectively. Their $Ra_f$$Pr$ dependencies are found to be $t_{emit}/\tau _0\sim Ra_f^{-0.41}\,Pr^{0.41}$, $t_{recover}/\tau _0\sim Ra_f^{-0.48}\,Pr^{0.48}$ and $t_{static}/\tau _0\sim Ra_f^{-0.49}\,Pr^{0.33}$, respectively. Thermal structures generated by finite $t_{heat}$ exhibit similar evolution dynamics once $t_{heat} \ge t_{emit}$, with the accelerating stage behaving like starting plumes and the decay stage like thermals (i.e. a finite amount of buoyant fluids). It is further found that their maximum rising velocity experiences a transition in the $Ra$-dependence from $Ra$ to $(Ra\ln Ra)^{0.5}$ at $Ra \simeq 6000$; and their maximum acceleration reaches the value of starting plumes at $t_{heat}\simeq t_{recover}$, and remains unchanged for larger $t_{heat}$. In particular, the maximum rising velocity for the cases with $t_{heat} = t_{recover}$ follows a scaling relation $Ra_f^{0.37}\,Pr^{-0.37}$, in contrast to the relation $Ra_f^{0.48}\,Pr^{-0.48}$ for starting plumes. This study provides a more comprehensive understanding of laminar thermal structures, which are relevant to a range of processes in nature and laboratory systems such as Rayleigh–Bénard convection.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Batchelor, G.K. 1954 Heat convection and buoyancy effects in fluids. Q. J. R. Meteorol. Soc. 80, 339358.CrossRefGoogle Scholar
Bhaganagar, K. & Bhimireddy, S.R. 2020 Numerical investigation of starting turbulent buoyant plumes released in neutral atmosphere. J. Fluid Mech. 900, A32.CrossRefGoogle Scholar
Bhamidipati, N. & Woods, A.W. 2017 On the dynamics of starting plumes. J. Fluid Mech. 833, R2.CrossRefGoogle Scholar
Bond, D. & Johari, H. 2005 Effects of initial geometry on the development of thermals. Exp. Fluids 39, 591601.CrossRefGoogle Scholar
Brown, E., Funfschilling, D. & Ahlers, G. 2007 Anomalous Reynolds-number scaling in turbulent Rayleigh–Bénard convection. J. Stat. Mech. 2007, P10005.CrossRefGoogle Scholar
Brown, E., Nikolaenko, A., Funfschilling, D. & Ahlers, G. 2005 Heat transport in turbulent Rayleigh–Bénard convection: effect of finite top- and bottom-plate conductivities. Phys. Fluids 17, 075108.CrossRefGoogle Scholar
Ching, E.S. 2007 Scaling laws in the central region of confined turbulent thermal convection. Phys. Rev. E 75, 056302.CrossRefGoogle ScholarPubMed
Davaille, A., Limare, A., Touitou, F., Kumagai, I. & Vatteville, J. 2011 Anatomy of a laminar starting thermal plume at high Prandtl number. Exp. Fluids 50, 285300.CrossRefGoogle Scholar
Davaille, A. & Vatteville, J. 2005 On the transient nature of mantle plumes. Geophys. Res. Lett. 32, L14309.CrossRefGoogle Scholar
Fujii, T. 1963 Theory of the steady laminar natural convectiol above a horizontal line heat source and a point heat source. Intl J. Heat Mass Transfer 6, 597606.CrossRefGoogle Scholar
Fujii, T., Morioka, I. & Uehara, H. 1973 Buoyant plume above a horizontal line heat source. Intl J. Heat Mass Transfer 16, 755768.Google Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large-scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Gebhart, B., Pera, L. & Schorr, A.W. 1970 Steady laminar natural convection plumes above a horizontal line heat source. Intl J. Heat Mass Transfer 13, 161171.CrossRefGoogle Scholar
Glaze, L.S., Self, S., Schmidt, A. & Hunter, S.J. 2017 Assessing eruption column height in ancient flood basalt eruptions. Earth Planet. Sci. Lett. 457, 263270.CrossRefGoogle Scholar
Griffiths, R.W. 1986 Thermals in extremely viscous fluids, including the effects of temperature-dependent viscosity. J. Fluid Mech. 166, 115138.CrossRefGoogle Scholar
Hansen, C.J., Esposito, L., Stewart, A.I.F., Colwell, J., Hendrix, A., Pryor, W. & West, R. 2006 Enceladus’ water vapor plume. Science 311, 14221425.CrossRefGoogle ScholarPubMed
Hay, W.A. & Papalexandris, M.V. 2020 Evaporation-driven turbulent convection in water pools. J. Fluid Mech. 904, A14.CrossRefGoogle Scholar
Helfrich, K.R. 1994 Thermals with background rotation and stratification. J. Fluid Mech. 259, 265280.CrossRefGoogle Scholar
Howard, L.N. 1966 Convection at high Rayleigh number. In Applied Mechanics (ed. H. Görtler), pp. 1109–1115. Springer.CrossRefGoogle Scholar
Jellinek, A.M. & Manga, M. 2004 Links between long-lived hot spots, mantle plumes, $D''$, and plate tectonics. Rev. Geophys. 42, RG3002.CrossRefGoogle Scholar
Jiang, Y., Nie, B. & Xu, F. 2019 a Lapping flow and starting plume on an evenly heated horizontal plate. Intl J. Heat Mass Transfer 138, 235243.CrossRefGoogle Scholar
Jiang, Y., Nie, B. & Xu, F. 2019 b Scaling laws of buoyant flows on a suddenly heated horizontal plate. Intl Commun. Heat Mass Transfer 105, 5864.CrossRefGoogle Scholar
Jiang, Y., Nie, B., Zhao, Y., Carmeliet, J. & Xu, F. 2021 Scaling of buoyancy-driven flows on a horizontal plate subject to a ramp heating of a finite time. Intl J. Heat Mass Transfer 171, 121061.CrossRefGoogle Scholar
Kadanoff, L.P. 2001 Turbulent heat flow: structures and scaling. Phys. Today 54, 3439.CrossRefGoogle Scholar
Kaminski, E. & Jaupart, C. 2003 Laminar starting plumes in high-Prandtl-number fluids. J. Fluid Mech. 478, 287298.CrossRefGoogle Scholar
van Keken, P.E., Davaille, A. & Vatteville, J. 2013 Dynamics of a laminar plume in a cavity: the influence of boundaries on the steady state stem structure. Geochem. Geophys. Geosyst. 14, 158178.CrossRefGoogle Scholar
Kondrashov, A., Sboev, I. & Dunaev, P. 2016 a Evolution of convective plumes adjacent to localized heat sources of various shapes. Intl J. Heat Mass Transfer 103, 298304.CrossRefGoogle Scholar
Kondrashov, A., Sboev, I. & Rybkin, K. 2016 b Effect of boundary conditions on thermal plume growth. Heat Mass Transfer 52, 13591368.CrossRefGoogle Scholar
Lam, S., Shang, X.D., Zhou, S.Q. & Xia, K.-Q. 2002 Prandtl number dependence of the viscous boundary layer and the Reynolds numbers in Rayleigh–Bénard convection. Phys. Rev. E 65, 066306.CrossRefGoogle ScholarPubMed
Li, X.-M., He, J.D., Tian, Y., Hao, P. & Huang, S.-D. 2021 a Effects of Prandtl number in quasi-two-dimensional Rayleigh–Bénard convection. J. Fluid Mech. 915, A60.CrossRefGoogle Scholar
Li, X.-M., Huang, S.-D., Ni, R. & Xia, K.-Q. 2021 b Lagrangian velocity and acceleration measurements in plume-rich regions of turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 6, 053503.CrossRefGoogle Scholar
Lithgow-Bertelloni, C., Richards, M.A., Conrad, C.P. & Griffiths, R.W. 2001 Plume generation in natural thermal convection at high Rayleigh and Prandtl numbers. J. Fluid Mech. 434, 121.CrossRefGoogle Scholar
Malkus, W.V.R. 1954 The heat transport and spectrum of thermal turbulence. Proc. R. Soc. Lond. A 225, 196212.Google Scholar
Maragatham, G. & Roomi, S.M. 2015 A review of image contrast enhancement methods and techniques. Res. J. Appl. Sci. 5, 309326.Google Scholar
Mordant, N., Crawford, A.M. & Bodenschatz, E. 2004 Experimental Lagrangian acceleration probability density function measurement. Physica D 193, 245251.CrossRefGoogle Scholar
Morton, B.R. 1960 Weak thermal vortex rings. J. Fluid Mech. 9, 107118.CrossRefGoogle Scholar
Morton, B.R., Taylor, G.I. & Turner, J.S. 1956 Turbulent gravitational convection from maintained and instantaneous sources. Proc. R. Soc. Lond. A 234, 123.Google Scholar
Moses, E., Zocchi, G. & Libchaberii, A. 1993 An experimental study of laminar plumes. J. Fluid Mech. 251, 581601.CrossRefGoogle Scholar
Moses, E., Zocchi, G., Procaccia, I. & Libchaber, A. 1991 The dynamics and interaction of laminar thermal plumes. Europhys. Lett. 14, 5560.CrossRefGoogle Scholar
Orlandi, P. & Carnevale, G.F. 2020 Numerical simulations of thermals with and without stratification. J. Fluid Mech. 899, A37.CrossRefGoogle Scholar
Peng, G.G. & Lister, J.R. 2014 The initial transient and approach to self-similarity of a very viscous buoyant thermal. J. Fluid Mech. 744, 352375.CrossRefGoogle Scholar
Pera, L. & Gebhart, B. 1971 On the stability of laminar plumes: some numerical solutions and experiments. Intl J. Heat Mass Transfer 14, 975984.CrossRefGoogle Scholar
Raffel, M., Willert, C.E., Scarano, F., Kähler, C.J., Wereley, S.T. & Kompenhans, J. 2018 Particle Image Velocimetry: A Practical Guide. Springer.CrossRefGoogle Scholar
Settles, G.S. 2001 Schlieren and Shadowgraph Techniques. Springer.CrossRefGoogle Scholar
Shishkina, O., Emran, M.S., Grossmann, S. & Lohse, D. 2017 Scaling relations in large-Prandtl-number natural thermal convection. Phys. Rev. Fluids 2, 103502.CrossRefGoogle Scholar
Shishkina, O., Horn, S., Wagner, S. & Ching, E.S.C. 2015 Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114, 114302.CrossRefGoogle ScholarPubMed
Shlien, D.J. 1976 Some laminar thermal and plume experiments. Phys. Fluids 19, 10891098.CrossRefGoogle Scholar
Shlien, D.J. 1979 Relations between point sources buoyant convection phenomena. Phys. Fluids 22, 22772283.CrossRefGoogle Scholar
Shlien, D.J. & Boxman, R.L. 1979 Temperature field measurement of an axisymmetric laminar plume. Phys. Fluids 22, 631634.CrossRefGoogle Scholar
Shlien, D.J. & Thompson, D.W. 1975 Some experiments on the motion of an isolated laminar thermal. J. Fluid Mech. 72, 3547.CrossRefGoogle Scholar
Silano, G., Sreenivasan, K.R. & Verzicco, R. 2010 Numerical simulations of Rayleigh–Bénard convection for Prandtl numbers between 10$^{-1}$ and 10$^4$ and Rayleigh numbers between 10$^5$ and 10$^9$. J. Fluid Mech. 662, 409446.CrossRefGoogle Scholar
Sparks, R.S.J. 1986 The dimensions and dynamics of volcanic eruption columns. Bull. Volcanol. 48, 315.CrossRefGoogle Scholar
Stothers, R.B. 1989 Turbulent atmospheric plumes above line sources with an application to volcanic fissure eruptions on the terrestrial planets. J. Atmos. Sci. 46, 26622670.2.0.CO;2>CrossRefGoogle Scholar
Sun, C. & Xia, K.-Q. 2007 Multi-point local temperature measurements inside the conducting plates in turbulent thermal convection. J. Fluid Mech. 570, 479489.CrossRefGoogle Scholar
Turner, J.S. 1962 The ‘starting plume’ in neutral surroundings. J. Fluid Mech. 13, 356368.CrossRefGoogle Scholar
Turner, J.S. 1969 Buoyant plumes and thermals. Annu. Rev. Fluid Mech. 1, 2944.CrossRefGoogle Scholar
Turner, J.S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Vest, C.M. & Lawson, M.L. 1972 Onset of convection near a suddenly heated horizontal wire. Intl J. Heat Mass Transfer 15, 12811283.CrossRefGoogle Scholar
Wang, Y., Xu, W., He, X., Yik, H., Wang, X., Schumacher, J. & Tong, P. 2018 Boundary layer fluctuations in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 840, 408431.CrossRefGoogle Scholar
Whittaker, R.J. & Lister, J.R. 2008 The self-similar rise of a buoyant thermal in very viscous flow. J. Fluid Mech. 606, 295324.CrossRefGoogle Scholar
Wilson, L., Sparks, R.S.J., Huang, T.C. & Watkins, N.D. 1978 The control of volcanic column heights by eruption energetics and dynamics. J. Geophys. Res. 83, 18291836.CrossRefGoogle Scholar
Woods, A.W. 2010 Turbulent plumes in nature. Annu. Rev. Fluid Mech. 42, 391412.CrossRefGoogle Scholar
Worster, M.G. 1986 The axisymmetric laminar plume: asymptotic solution for large Prandtl number. Stud. Appl. Maths 75, 139152.CrossRefGoogle Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xu, W., Wang, Y., He, X., Wang, X., Schumacher, J., Huang, S.-D. & Tong, P. 2021 Mean velocity and temperature profiles in turbulent Rayleigh–Bénard convection at low Prandtl numbers. J. Fluid Mech. 918, A1.CrossRefGoogle Scholar
Yih, C.S. 1952 Laminar free convection due to a line source of heat. Trans. Am. Geophys. Union 33, 669672.Google Scholar
Zhou, Q., Stevens, R.J.A.M., Sugiyama, K., Grossmann, S., Lohse, D. & Xia, K.-Q. 2010 Prandtl–Blasius temperature and velocity boundary-layer profiles in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 664, 297312.CrossRefGoogle Scholar
Zhou, S.Q., Xie, Y.C., Sun, C. & Xia, K.-Q. 2016 Statistical characterization of thermal plumes in turbulent thermal convection. Phys. Rev. Fluids 1, 054301.CrossRefGoogle Scholar
Supplementary material: File

Qin et al. supplementary movie

Movie of shadowgraph images of the thermal boundary layer development during the formation process of a starting plume at Pr = 904.7 and Raf = 6.5 × 106. The right panel shows how the thermal boundary layer thickness changes during this process, which can be divided into four stages separted by three characterisic times as indicated in the movie.
Download Qin et al. supplementary movie(File)
File 1.4 MB