Hostname: page-component-546b4f848f-bvkm5 Total loading time: 0 Render date: 2023-05-30T08:18:15.568Z Has data issue: false Feature Flags: { "useRatesEcommerce": true } hasContentIssue false

Flow states and heat transport in liquid metal convection

Published online by Cambridge University Press:  28 October 2022

Lei Ren
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China
Xin Tao
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China
Lu Zhang
Affiliation:
Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Ming-Jiu Ni
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China School of Engineering Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China
Ke-Qing Xia
Affiliation:
Center for Complex Flows and Soft Matter Research and Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
Yi-Chao Xie*
Affiliation:
State Key Laboratory for Strength and Vibration of Mechanical Structures and School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, PR China
*
Email address for correspondence: yichao.xie@xjtu.edu.cn

Abstract

We present an experimental study of Rayleigh–Bénard convection using liquid metal alloy gallium-indium-tin as the working fluid with a Prandtl number of $Pr=0.029$. The flow state and the heat transport were measured in a Rayleigh number range of $1.2\times 10^{4} \le Ra \le 1.3\times 10^{7}$. The temperature fluctuation at the cell centre is used as a proxy for the flow state. It is found that, as $Ra$ increases from the lower end of the parameter range, the flow evolves from a convection state to an oscillation state, a chaotic state and finally a turbulent state for $Ra>10^5$. The study suggests that the large-scale circulation in the turbulent state is a residual of the cell structure near the onset of convection, which is in contrast with the case of $Pr\sim 1$, where the cell structure is transiently replaced by high order flow modes before the emergence of the large-scale circulation in the turbulent state. The evolution of the flow state is also reflected by the heat transport characterised by the Nusselt number $Nu$ and the probability density function (p.d.f.) of the temperature fluctuation at the cell centre. It is found that the effective local heat transport scaling exponent $\gamma$, i.e. $Nu\sim Ra^{\gamma }$, changes continuously from $\gamma =0.49$ at $Ra\sim 10^4$ to $\gamma =0.25$ for $Ra>10^6$. Meanwhile, the p.d.f. at the cell centre gradually evolves from a Gaussian-like shape before the transition to turbulence to an exponential-like shape in the turbulent state. For $Ra>10^6$, the flow shows self-similar behaviour, which is revealed by the universal shape of the p.d.f. of the temperature fluctuation at the cell centre and a $Nu=0.19Ra^{0.25}$ scaling for the heat transport.

Type
JFM Rapids
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G. 2000 Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh–Bénard convection. Phys. Rev. E 63, 015303.CrossRefGoogle ScholarPubMed
Ahlers, G., et al. 2022 Aspect ratio dependence of heat transfer in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 128, 084501.CrossRefGoogle Scholar
Akashi, M., Yanagisawa, T., Sakuraba, A., Schindler, F., Horn, S., Vogt, T. & Eckert, S. 2022 Jump rope vortex flow in liquid metal Rayleigh–Bénard convection in a cuboid container of aspect ratio $\varGamma = 5$. J. Fluid Mech. 932, A27.CrossRefGoogle Scholar
Aurnou, J.M. & Olson, P.L. 2001 Experiments on Rayleigh–Bénard convection, magnetoconvection and rotating magnetoconvection in liquid gallium. J. Fluid Mech. 430, 283307.CrossRefGoogle Scholar
Buell, J.C. & Catton, I. 1983 The effect of wall conduction on the stability of a fluid in a right circular cylinder heated from below. Trans. ASME J. Heat Transfer 105, 255260.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Frick, P., Khalilov, R., Kolesnichenko, I., Mamykin, A., Pakholkov, V., Pavlinov, A. & Rogozhkin, S. 2015 Turbulent convective heat transfer in a long cylinder with liquid sodium. Europhys. Lett. 109, 14002.CrossRefGoogle Scholar
Glazier, J.A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.CrossRefGoogle Scholar
Globe, S. & Dropkin, D. 1959 Natural-convection heat transfer in liquids confined by two horizontal plates and heated from below. Trans. ASME J. Heat Transfer 81, 2428.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Hébert, F., Hufschmid, R., Scheel, J. & Ahlers, G. 2010 Onset of Rayleigh–Bénard convection in cylindrical containers. Phys. Rev. E 81, 046318.CrossRefGoogle ScholarPubMed
Heslot, F., Castaing, B. & Libchaber, A. 1987 Transitions to turbulence in helium gas. Phys. Rev. A 36, 58705873.CrossRefGoogle ScholarPubMed
Horanyi, S., Krebs, L. & Müller, U. 1999 Turbulent Rayleigh–Bénard convection in low Prandtl-number fluids. Intl J. Heat Mass Transfer 42, 39834003.CrossRefGoogle Scholar
Khalilov, R., Kolesnichenko, I., Pavlinov, A., Mamykin, A., Shestakov, A. & Frick, P. 2018 Thermal convection of liquid sodium in inclined cylinders. Phys. Rev. Fluids 3, 043503.CrossRefGoogle Scholar
King, E.M. & Aurnou, J.M. 2013 Turbulent convection in liquid metal with and without rotation. Proc. Natl Acad. Sci. 110, 66886693.CrossRefGoogle ScholarPubMed
Mamykin, A., Frick, P., Khalilov, R., Kolesnichenko, I., Pakholkov, V., Rogozhkin, S. & Vasiliev, A. 2015 Turbulent convective heat transfer in an inclined tube with liquid sodium. Magnetohydrodynamics 51, 329336.CrossRefGoogle Scholar
Pandey, A. 2021 Thermal boundary layer structure in low-Prandtl-number turbulent convection. J. Fluid Mech. 910, A13.CrossRefGoogle Scholar
Plevachuk, Y., Sklyarchuk, V., Eckert, S., Gerbeth, G. & Novakovic, R. 2014 Thermophysical properties of the liquid Ga-In-Sn eutectic alloy. J. Chem. Eng. Data 59, 757763.CrossRefGoogle Scholar
Rossby, H.T. 1969 A study of Bénard convection with and without rotation. J. Fluid Mech. 36, 309335.CrossRefGoogle Scholar
Scheel, J.D. & Schumacher, J. 2016 Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147173.CrossRefGoogle Scholar
Schindler, F., Eckert, S., Zürner, T., Schumacher, J. & Vogt, T. 2022 Collapse of coherent large scale flow in strongly turbulent liquid metal convection. Phys. Rev. Lett. 128, 164501.CrossRefGoogle ScholarPubMed
Stevens, R.J.A.M., van der Poel, E.P., Grossmann, S. & Lohse, D. 2013 The unifying theory of scaling in thermal convection: the updated prefactors. J. Fluid Mech. 730, 295308.CrossRefGoogle Scholar
Takeshita, T., Segawa, T., Glazier, J.A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76, 14651468.CrossRefGoogle ScholarPubMed
Teimurazov, A., Frick, P. & Stefani, F. 2017 Thermal convection of liquid metal in the titanium reduction reactor. IOP Conf. Ser.: Mater. Sci. Eng. 208, 012041.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 1997 Transitional regimes of low-Prandtl thermal convection in a cylindrical cell. Phys. Fluids 9, 12871295.CrossRefGoogle Scholar
Vogt, T., Horn, S., Grannan, A.M. & Aurnou, J.M. 2018 Jump rope vortex in liquid metal convection. Proc. Natl Acad. Sci. 115, 1267412679.CrossRefGoogle ScholarPubMed
Wei, P. 2021 The persistence of large-scale circulation in Rayleigh–Bénard convection. J. Fluid Mech. 924, A28.CrossRefGoogle Scholar
Xi, H.-D., Lam, S.I.U. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.CrossRefGoogle Scholar
Zhou, S.-Q. & Xia, K.-Q. 2002 Plume statistics in thermal turbulence: mixing of an active scalar. Phys. Rev. Lett. 89, 184502.CrossRefGoogle ScholarPubMed
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. 2019 Combined measurement of velocity and temperature in liquid metal convection. J. Fluid Mech. 876, 11081128.CrossRefGoogle Scholar
Zwirner, L., Khalilov, R., Kolesnichenko, I., Mamykin, A., Mandrykin, S., Pavlinov, A., Shestakov, A., Teimurazov, A., Frick, P. & Shishkina, O. 2020 The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection. J. Fluid Mech. 884, A18.CrossRefGoogle Scholar