Skip to main content Accessibility help

The evaporatively driven cloud-top mixing layer

Published online by Cambridge University Press:  27 July 2010

Institut für Technische Verbrennung, RWTH Aachen University, Templergraben 64, 52056 Aachen, Germany


Direct numerical simulations of the turbulent temporally evolving cloud-top mixing layer are used to investigate the role of evaporative cooling by isobaric mixing locally at the stratocumulus top. It is shown that the system develops a horizontal layered structure whose evolution is determined by molecular transport. A relatively thin inversion with a constant thickness h = κ/we is formed on top and travels upwards at a mean velocity we ≃ 0.1(κ |bsc2)1/3, where κ is the mixture-fraction diffusivity, bs < 0 is the buoyancy anomaly at saturation conditions χs and χc is the cross-over mixture fraction defining the interval of buoyancy reversing mixtures. A turbulent convection layer develops below and continuously broadens into the cloud (the lower saturated fluid). This turbulent layer approaches a self-preserving state that is characterized by the convection scales constructed from a constant reference buoyancy flux Bs = |bs|wes. Right underneath the inversion base, a transition or buffer zone is defined based on a strong local conversion of vertical to horizontal motion that leads to a cellular pattern and sheet-like plumes, as observed in cloud measurements and reported in other free-convection problems. The fluctuating saturation surface (instantaneous cloud top) is contained inside this intermediate region. Results show that the inversion is not broken due to the turbulent convection generated by the evaporative cooling, and the upward mean entrainment velocity we is negligibly small compared to the convection velocity scale w* of the turbulent layer and the corresponding growth rate into the cloud.

Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below.


Adrian, R. J., Ferreira, R. T. D. S. & Boberg, T. 1986 Turbulent thermal convection in wide horizontal layers. Exp. Fluids 4, 121141.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Albrecht, B. A., Penc, R. S. & Schubert, W. H. 1985 An observational study of cloud-topped mixed layers. J. Atmos. Sci. 42, 800822.2.0.CO;2>CrossRefGoogle Scholar
Asaeda, T. & Watanabe, K. 1989 The mechanism of heat transport in thermal convection at high Rayleigh numbers. Phys. Fluids A 1 (5), 861867.CrossRefGoogle Scholar
Bretherton, C. S. 1987 A theory for nonprecipitating moist convection between two parallel plates. Part 1. Thermodynamics and linear solutions. J. Atmos. Sci. 44, 18091827.2.0.CO;2>CrossRefGoogle Scholar
Caughey, S. J., Crease, B. A. & Roach, W. T. 1982 A field study of nocturnal stratocumulus. Part 2. Turbulence structure and entrainment. Q. J. R. Meteorol. Soc. 108, 125144.CrossRefGoogle Scholar
Deardorff, J. W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27, 12111213.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. 1980 Cloud top entrainment instability. J. Atmos. Sci. 37, 131147.2.0.CO;2>CrossRefGoogle Scholar
Deardorff, J. W. & Willis, G. E. 1967 Investigation of turbulent thermal convection between horizontal plates. J. Fluid Mech. 28, 675704.CrossRefGoogle Scholar
Faloona, I., Lenschow, D. H., Campos, T., Stevens, B., van Zanten, M., Bloomquist, B., Thorton, D., Bandy, A. & Gerber, H. 2005 Observations of entrainment in eastern Pacific marine stratocumulus using three conserved scalars. J. Atmos. Sci. 62, 32683284.CrossRefGoogle Scholar
Fernando, H. J. S. 1991 Turbulent mixing in stratified fluids. Annu. Rev. Fluid Mech. 23, 455493.CrossRefGoogle Scholar
Fernando, H. J. S. & Hunt, J. C. R. 1997 Turbulence, waves and mixing at shear-free density interfaces. Part 1. A theoretical model. J. Fluid Mech. 347, 197234.CrossRefGoogle Scholar
Flack, K. A., Saylor, J. R. & Smith, G. B. 2001 Near-surface turbulence for evaporative convection at an air/water interface. Phys. Fluids 13 (11), 33383345.CrossRefGoogle Scholar
Gerber, H., Malinowski, G., Frick, S. P., Brenguier, J.-L. & Burnet, F. 2005 Holes and entrainment in stratocumulus. J. Atmos. Sci. 62, 443459.CrossRefGoogle Scholar
Goldstein, R. J. & Volino, R. J. 1995 Onset and development of natural convection above a suddenly heated horizontal surface. J. Heat Transfer 117, 884894.CrossRefGoogle Scholar
Haman, K. E. 2009 Simple approach to dynamics of entrainment interface layers and cloud holes in stratocumulus clouds. Q. J. R. Meteorol. Soc. 135, 93100.CrossRefGoogle Scholar
Haman, K. E., Malinowski, S. P., Kurowski, M. J., Gerber, H. & Brenguier, J.-L. 2007 Small-scale mixing processes at the top of a marine stratocumulus: a case study. Q. J. R. Meteorol. Soc. 133, 213226.CrossRefGoogle Scholar
Kerr, R. M. 2001 Energy budget in Rayleigh–Bénard convection. Phys. Rev. Lett. 87, 244502.CrossRefGoogle ScholarPubMed
Krueger, S. K. 1993 Linear eddy modeling of entrainment and mixing in stratus clouds. J. Atmos. Sci. 50, 30783090.2.0.CO;2>CrossRefGoogle Scholar
Kunnen, R. P. J., Geurts, B. J. & Clercx, H. J. H. 2009 Turbulence statistics and energy budget in rotating Rayleigh–Bénard convection. Eur. J. Mech. B Fluids 28, 578589.CrossRefGoogle Scholar
Kurowski, M. J., Malinowski, S. P. & Grabowski, W. 2009 A numerical investigation of entrainment and transport within a stratocumulus-topped boundary layer. Q. J. R. Meteorol. Soc. 135, 7792.CrossRefGoogle Scholar
Leighton, R. I., Smith, G. B. & Handler, R. A. 2003 Direct numerical simulation of free convection beneath an air–water interface at low Rayleigh numbers. Phys. Fluids 15 (10), 31813193.CrossRefGoogle Scholar
Lilly, D. K. 1968 Models of cloud-topped mixed layers under strong inversion. Q. J. R. Meteorol. Soc. 94, 292309.CrossRefGoogle Scholar
Mellado, J. P., Stevens, B., Schmidt, H. & Peters, N. 2009 Buoyancy reversal in cloud-top mixing layers. Q. J. R. Meteorol. Soc. 135, 963978.CrossRefGoogle Scholar
Mellado, J. P., Stevens, B., Schmidt, H. & Peters, N. 2010 Two-fluid formulation of the cloud-top mixing layer for direct numerical simulation. Theor. Comput. Fluid Dyn., doi:10.1007/s00162-010-0182-x.CrossRefGoogle Scholar
Moeng, C.-H. & Rotunno, R. 1990 Vertical velocity skewness in the bouyancy-driven boundary layer. J. Atmos. Sci. 47, 11491162.2.0.CO;2>CrossRefGoogle Scholar
Moeng, C.-H., Stevens, B. & Sullivan, P. P. 2005 Where is the interface of the stratocumulus-topped PBL. J. Atmos. Sci. 62, 26262631.CrossRefGoogle Scholar
Nicholls, S. 1989 The structure of radiatively driven convection in stratocumulus. Q. J. R. Meteorol. Soc. 115, 487511.CrossRefGoogle Scholar
Randall, D. A. 1980 Conditional instability of the first kind upside-down. J. Atmos. Sci. 37, 125130.2.0.CO;2>CrossRefGoogle Scholar
Sayler, B. J. & Breidenthal, R. E. 1998 Laboratory simulations of radiatively induced entrainment in stratiform clouds. J. Geophys. Res. 103 (D8), 88278837.CrossRefGoogle Scholar
Shy, S. S. & Breidenthal, R. E. 1990 Laboratory experiments on the cloud-top entrainment instability. J. Fluid Mech. 214, 115.CrossRefGoogle Scholar
Siems, S. T. & Bretherton, C. S. 1992 A numerical investigation of cloud-top entrainment instability and related experiments. Q. J. R. Meteorol. Soc. 118, 787818.CrossRefGoogle Scholar
Siems, S. T., Bretherton, C. S., Baker, M. B., Shy, S. & Breidenthal, R. E. 1990 Buoyancy reversal and cloud-top entrainment instability. Q. J. R. Meteorol. Soc. 116, 705739.CrossRefGoogle Scholar
Siggia, E. D. 1994 High Rayleigh number convection. Annu. Rev. Fluid Mech. 26, 137168.CrossRefGoogle Scholar
Stevens, B. 2002 Entrainment in stratocumulus-topped mixed layers. Q. J. R. Meteorol. Soc. 128, 26632690.CrossRefGoogle Scholar
Stevens, B., Lenschow, D. H., Faloona, I., Moeng, C.-H., Lilly, D. K., Blomquist, B., Vali, G., Bandy, A., Campos, T., Gerber, H., Haimov, S., Morley, B. & Thorton, C. 2003 a On entrainment rates in nocturnal marine stratocumulus. Q. J. R. Meteorol. Soc. 129 (595), 34693493.CrossRefGoogle Scholar
Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., Brenguier, J.-L., Bretherton, C. S., Burnet, F., Campos, T., Chai, S., Faloona, I., Friesen, D., Haimov, S., Laursen, K., Lilly, D. K., Loehrer, S. M., Malinowski, S. P., Morley, B., Petters, M. D., Rogers, D. C., Russel, L., Savic-Jovcic, V., Snider, J. R., Straub, D., Szumowski, M. J., Takagi, H., Thornton, D. C., Tschudi, M., Towhy, C., Wetzel, M. & van Zanten, M. C. 2003 b Dynamics and chemistry of marine stratocumulus: DYCOMS-II. Bull. Am. Meteorol. Soc. 84, 579593.CrossRefGoogle Scholar
Stevens, B., Moeng, C.-H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Müller, F., Stevens, D. E., Whelan, E. & Zhu, P. 2005 Evaluation of large-eddy simulations via observations of nocturnal marine stratocumulus. Mon. Weather Rev. 133, 14431462.CrossRefGoogle Scholar
Stevens, D. E., Bell, J. B., Almgren, A. S., Beckner, V. E. & Rendleman, C. A. 2000 Small-scale processes and entrainment in a stratocumulus marine boundary layer. J. Atmos. Sci. 57, 567581.2.0.CO;2>CrossRefGoogle Scholar
Sullivan, P. P., Moeng, C.-H., Stevens, B., Lenschow, D. H. & Mayor, S. D. 1998 Structure of the entrainment zone capping the convective atmospheric boundary layer. J. Atmos. Sci. 55, 30423064.2.0.CO;2>CrossRefGoogle Scholar
Theerthan, S. A. & Arakeri, J. H. 2000 Planform structure and heat transfer in turbulent free convection over horizontal surfaces. Phys. Fluids 12 (4), 884894.CrossRefGoogle Scholar
Townsend, A. A. 1959 Temperature fluctuations over a heated horizontal surface. J. Fluid Mech. 5, 209241.CrossRefGoogle Scholar
Turner, J. S. 1973 Buoyancy Effects in Fluids. Cambridge University Press.CrossRefGoogle Scholar
Wunsch, S. 2003 Stochastic simulations of buoyancy reversal experiments. Phys. Fluids 15 (6), 14421456.CrossRefGoogle Scholar
Yamaguchi, T. & Randall, D. A. 2008 Large-eddy simulation of evaporatively driven entrainment in cloud-topped mixed layers. J. Atmos. Sci. 65, 14811504.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 140 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 2nd December 2020. This data will be updated every 24 hours.

Hostname: page-component-79f79cbf67-nqzjh Total loading time: 3.811 Render date: 2020-12-02T07:22:05.771Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Wed Dec 02 2020 07:06:19 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": false, "languageSwitch": true }

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The evaporatively driven cloud-top mixing layer
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The evaporatively driven cloud-top mixing layer
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The evaporatively driven cloud-top mixing layer
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *