Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-23T22:07:24.225Z Has data issue: false hasContentIssue false

Enhanced heat transfer and reduced flow reversals in turbulent thermal convection with an obstructed centre

Published online by Cambridge University Press:  21 February 2024

Yi-Zhen Li
Affiliation:
School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China
Xin Chen*
Affiliation:
School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China Shanghai Institute of Applied Mathematics and Mechanics and Shanghai Key Laboratory of Mechanics in Energy Engineering, School of Mechanics and Engineering Science, Shanghai University, Shanghai 200072, PR China
Heng-Dong Xi*
Affiliation:
School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an 710072, PR China
*
Email addresses for correspondence: xinchen99@shu.edu.cn, hengdongxi@nwpu.edu.cn
Email addresses for correspondence: xinchen99@shu.edu.cn, hengdongxi@nwpu.edu.cn

Abstract

We report an experimental study about the effect of an obstructed centre on heat transport and flow reversal by inserting an adiabatic cylinder at the centre of a quasi-two-dimensional Rayleigh–Bénard convection cell. The experiments are carried out in a Rayleigh number ($Ra$) range of $2\times 10^7 \leq Ra \leq 2\times 10^9$ and at a Prandtl number ($Pr$) of $5.7$. It is found that for low $Ra$, the obstructed centre leads to a heat transfer enhancement of up to 21 $\%$, while as $Ra$ increases, the magnitude of the heat transfer enhancement decreases and the heat transfer efficiency ($Nu$) eventually converges to that of the unobstructed normal cell. Particle image velocimetry measurements show that the heat transfer enhancement originates from the change in flow topology due to the presence of the cylindrical obstruction. In the low-$Ra$ regime the presence of the obstruction promotes the transition of the flow topology from the four-roll state to the abnormal single-roll state then to the normal single-roll state with increasing obstruction size. While in the high-$Ra$ regime, the flow is always in the single-roll state regardless of the obstruction size, although the flow becomes more coherent with the size of the obstruction. We also found that in the presence of the cylindrical obstruction, the stability of the corner vortices is significantly reduced, leading to a large reduction in the frequency of flow reversals.

Type
JFM Papers
Copyright
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81 (2), 503537.CrossRefGoogle Scholar
Araujo, F.F., Grossmann, S. & Lohse, D. 2005 Wind reversals in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 95 (8), 084502.CrossRefGoogle ScholarPubMed
Assaf, M., Angheluta, L. & Goldenfeld, N. 2011 Rare fluctuations and large-scale circulation cessations in turbulent convection. Phys. Rev. Lett. 107 (4), 044502.CrossRefGoogle ScholarPubMed
Bao, Y., Chen, J., Liu, B.-F., She, Z.-S., Zhang, J. & Zhou, Q. 2015 Enhanced heat transport in partitioned thermal convection. J. Fluid Mech. 784, R5.CrossRefGoogle Scholar
Benzi, R. 2005 Flow reversal in a simple dynamical model of turbulence. Phys. Rev. Lett. 95 (2), 024502.CrossRefGoogle Scholar
Benzi, R. & Ching, E.S.C. 2018 Polymers in fluid flows. Annu. Rev. Condens. Matt. Phys. 9, 163181.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2007 Large-scale circulation model for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 98 (13), 134501.CrossRefGoogle ScholarPubMed
Buongiorno, J., et al. 2009 A benchmark study on the thermal conductivity of nanofluids. J. Appl. Phys. 106 (9), 094312.CrossRefGoogle Scholar
Castillo-Castellanos, A., Sergent, A., Podvin, B. & Rossi, M. 2019 Cessation and reversals of large-scale structures in square Rayleigh–Bénard cells. J. Fluid Mech. 877, 922954.CrossRefGoogle Scholar
Chandra, M. & Verma, M.K. 2013 Flow reversals in turbulent convection via vortex reconnections. Phys. Rev. Lett. 110 (11), 114503.CrossRefGoogle ScholarPubMed
Chen, X., Huang, S.-D., Xia, K.-Q. & Xi, H.-D. 2019 Emergence of substructures inside the large-scale circulation induces transition in flow reversals in turbulent thermal convection. J. Fluid Mech. 877, R1.CrossRefGoogle Scholar
Chen, X., Wang, D.-P. & Xi, H.-D. 2020 Reduced flow reversals in turbulent convection in the absence of corner vortices. J. Fluid Mech. 891, R5.CrossRefGoogle Scholar
Chilla, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35 (7), 58.CrossRefGoogle ScholarPubMed
Chong, K.-L., Wagner, S., Kaczorowski, M., Shishkina, O. & Xia, K.-Q. 2018 Effect of Prandtl number on heat transport enhancement in Rayleigh–Bénard convection under geometrical confinement. Phys. Rev. Fluids 3 (1), 013501.CrossRefGoogle Scholar
Ciliberto, S., Cioni, S. & Laroche, C. 1996 Large-scale flow properties of turbulent thermal convection. Phys. Rev. E 54 (6), R5901.CrossRefGoogle ScholarPubMed
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Du, Y.-B. & Tong, P. 1998 Enhanced heat transport in turbulent convection over a rough surface. Phys. Rev. Lett. 81 (5), 987.CrossRefGoogle Scholar
Glatzmaier, G.A., Coe, R.S., Hongre, L. & Roberts, P.H. 1999 The role of the earth's mantle in controlling the frequency of geomagnetic reversals. Nature 401 (6756), 885890.CrossRefGoogle Scholar
Huang, S.-D., Kaczorowski, M., Ni, R. & Xia, K.-Q. 2013 Confinement-induced heat-transport enhancement in turbulent thermal convection. Phys. Rev. Lett. 111 (10), 104501.CrossRefGoogle ScholarPubMed
Huang, S.-D., Wang, F., Xi, H.-D. & Xia, K.-Q. 2015 Comparative experimental study of fixed temperature and fixed heat flux boundary conditions in turbulent thermal convection. Phys. Rev. Lett. 115 (15), 154502.CrossRefGoogle ScholarPubMed
Huang, S.-D. & Xia, K.-Q. 2016 Effects of geometric confinement in quasi-2D turbulent Rayleigh–Bénard convection. J. Fluid Mech. 794, 639654.CrossRefGoogle Scholar
Kar, P.K., Kumar, Y.N., Das, P.K. & Lakkaraju, R. 2020 Thermal convection in octagonal-shaped enclosures. Phys. Rev. Fluids 5 (10), 103501.CrossRefGoogle Scholar
Krishnamurti, R. & Howard, L.N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl. Acad. Sci. USA 78 (4), 19811985.CrossRefGoogle ScholarPubMed
Lakkaraju, R., Stevens, R.J., Oresta, P., Verzicco, R., Lohse, D. & Prosperetti, A. 2013 Heat transport in bubbling turbulent convection. Proc. Natl. Acad. Sci. USA 110 (23), 92379242.CrossRefGoogle ScholarPubMed
Liu, B. & Zhang, J. 2008 Self-induced cyclic reorganization of free bodies through thermal convection. Phys. Rev. Lett. 100 (24), 244501.CrossRefGoogle ScholarPubMed
Liu, S. & Huisman, S.G. 2020 Heat transfer enhancement in Rayleigh–Bénard convection using a single passive barrier. Phys. Rev. Fluids 5 (12), 123502.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42 (1), 335364.CrossRefGoogle Scholar
Ni, R., Huang, S.-D. & Xia, K.-Q. 2015 Reversals of the large-scale circulation in quasi-2D Rayleigh–Bénard convection. J. Fluid Mech. 778, R5.CrossRefGoogle Scholar
Podvin, B. & Sergent, A. 2015 A large-scale investigation of wind reversal in a square Rayleigh–Bénard cell. J. Fluid Mech. 766, 172201.CrossRefGoogle Scholar
Sreenivasan, K.R., Bershadskii, A. & Niemela, J.J. 2002 Mean wind and its reversal in thermal convection. Phys. Rev. E 65, 056306.CrossRefGoogle ScholarPubMed
Sugiyama, K., Ni, R., Stevens, R.J., Chan, T.-S., Zhou, S.-Q., Xi, H.-D., Sun, C., Grossmann, S., Xia, K.-Q. & Lohse, D. 2010 Flow reversals in thermally driven turbulence. Phys. Rev. Lett. 105 (3), 034503.CrossRefGoogle ScholarPubMed
Van Doorn, E., Dhruva, B., Sreenivasan, K.R. & Cassella, V. 2000 Statistics of wind direction and its increments. Phys. Fluids 12 (6), 15291534.CrossRefGoogle Scholar
Vasilev, A.Y. & Frick, P.G. 2011 Reversals of large-scale circulation in turbulent convection in rectangular cavities. J. Expl Theor. Phys. Lett. 93 (6), 330334.CrossRefGoogle Scholar
Wagner, S. & Shishkina, O. 2013 Aspect-ratio dependency of Rayleigh–Bénard convection in box-shaped containers. Phys. Fluids 25 (8), 085110.CrossRefGoogle Scholar
Wang, B.-F., Zhou, Q. & Sun, C. 2020 Vibration-induced boundary-layer destabilization achieves massive heat-transport enhancement. Sci. Adv. 6 (21), eaaz8239.CrossRefGoogle ScholarPubMed
Wang, Q., Xia, S.-N., Wang, B.-F., Sun, D.-J., Zhou, Q. & Wan, Z.-H. 2018 Flow reversals in two-dimensional thermal convection in tilted cells. J. Fluid Mech. 849, 355372.CrossRefGoogle Scholar
Wang, Z.-Q., Mathai, V. & Sun, C. 2019 Self-sustained biphasic catalytic particle turbulence. Nat. Commun. 10 (1), 3333.CrossRefGoogle ScholarPubMed
Wei, P., Chan, T.-S., Rui, N., Zhao, X.-Z. & Xia, K.-Q. 2014 Heat transport properties of plates with smooth and rough surfaces in turbulent thermal convection. J. Fluid Mech. 740, 2846.CrossRefGoogle Scholar
Xi, H.-D., Lam, S. & Xia, K.-Q. 2004 From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection. J. Fluid Mech. 503, 4756.CrossRefGoogle Scholar
Xi, H.-D. & Xia, K.-Q. 2007 Cessations and reversals of the large-scale circulation in turbulent thermal convection. Phys. Rev. E 75, 066307.CrossRefGoogle ScholarPubMed
Xi, H.-D., Zhang, Y.-B., Hao, J.-T. & Xia, K.-Q. 2016 Higher-order flow modes in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 805, 3151.CrossRefGoogle Scholar
Xia, K.-Q. 2013 Current trends and future directions in turbulent thermal convection. Theor. Appl. Mech. Lett. 3 (5), 052001.CrossRefGoogle Scholar
Xia, K.-Q. & Lui, S.-L. 1997 Turbulent thermal convection with an obstructed sidewall. Phys. Rev. Lett. 79 (25), 5006.CrossRefGoogle Scholar
Xia, K.-Q., Sun, C. & Zhou, S.-Q. 2003 Particle image velocimetry measurement of the velocity field in turbulent thermal convection. Phys. Rev. E 68, 066303.CrossRefGoogle ScholarPubMed
Xie, Y.-C., Ding, G.-Y. & Xia, K.-Q. 2018 Flow topology transition via global bifurcation in thermally driven turbulence. Phys. Rev. Lett. 120 (21), 214501.CrossRefGoogle ScholarPubMed
Xie, Y.-C. & Xia, K.-Q. 2017 Turbulent thermal convection over rough plates with varying roughness geometries. J. Fluid Mech. 825, 573599.CrossRefGoogle Scholar
Xu, A., Chen, X., Wang, F. & Xi, H.-D. 2020 Correlation of internal flow structure with heat transfer efficiency in turbulent Rayleigh–Bénard convection. Phys. Fluids 32 (10), 105112.CrossRefGoogle Scholar
Xu, A., Chen, X. & Xi, H.-D. 2021 Tristable flow states and reversal of the large-scale circulation in two-dimensional circular convection cells. J. Fluid Mech. 910, A33.CrossRefGoogle Scholar
Xu, A., Xu, B.-R. & Xi, H.-D. 2023 Wall-sheared thermal convection: heat transfer enhancement and turbulence relaminarization. J. Fluid Mech. 960, A2.CrossRefGoogle Scholar
Zhang, L. & Xia, K.-Q. 2023 Achieving heat transfer enhancement via manipulation of bulk flow structures in turbulent thermal convection. Phys. Rev. Fluids 8 (2), 023501.CrossRefGoogle Scholar
Zhang, S.-Q., Chen, X., Xia, Z.-H., Xi, H.-D., Zhou, Q. & Chen, S.-Y. 2021 Stabilizing/destabilizing the large-scale circulation in turbulent Rayleigh–Bénard convection with sidewall temperature control. J. Fluid Mech. 915, A14.CrossRefGoogle Scholar
Zhao, C.-B, Wang, B.-F., Wu, J.-Z., Chong, K.L. & Zhou, Q. 2022 Suppression of flow reversals via manipulating corner rolls in plane turbulent Rayleigh–Bénard convection. J. Fluid Mech. 946, A44.CrossRefGoogle Scholar
Zwirner, L., Khalilov, R., Kolesnichenko, I., Mamykin, A., Mandrykin, S., Pavlinov, A., Shestakov, A., Teimurazov, A., Frick, P. & Shishkina, O. 2020 The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection. J. Fluid Mech. 884, A18.CrossRefGoogle Scholar
Zwirner, L. & Shishkina, O. 2018 Confined inclined thermal convection in low-prandtl-number fluids. J. Fluid Mech. 850, 9841008.CrossRefGoogle Scholar