Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-12-08T22:09:16.313Z Has data issue: false hasContentIssue false

Efficient simulation of non-classical liquid–vapour phase-transition flows: a method of fundamental solutions

Published online by Cambridge University Press:  01 June 2021

Anirudh S. Rana*
Affiliation:
Department of Mathematics, BITS Pilani, Pilani Campus, Rajasthan, India
Sonu Saini
Affiliation:
Department of Mathematics, BITS Pilani, Pilani Campus, Rajasthan, India
Suman Chakraborty
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, India
Duncan A. Lockerby
Affiliation:
School of Engineering, University of Warwick, CoventryCV4 7AL, UK
James E. Sprittles
Affiliation:
Mathematics Institute, University of Warwick, CoventryCV4 7AL, UK
*
Email address for correspondence: anirudh.rana@pilani.bits-pilani.ac.in

Abstract

Classical continuum-based liquid–vapour phase-change models typically assume continuity of temperature at phase interfaces along with a relation which describes the rate of evaporation at the interface (Hertz–Knudsen–Schrage, for example). However, for phase-transition processes at small scales, such as the evaporation of nanodroplets, the assumption that the temperature is continuous across the liquid–vapour interface leads to significant inaccuracies (McGaughey et al., J. Appl. Phys., vol. 91, issue 10, pp. 6406–6415; Rana et al., Phys. Rev. Lett., vol. 123, 154501), as might the adoption of classical constitutive relations that lead to the Navier–Stokes–Fourier (NSF) equations. In this paper, to capture the notable effects of rarefaction at small scales, we adopt an extended continuum-based approach utilising the coupled constitutive relations (CCRs). In CCR theory, additional terms are invoked in the constitutive relations of the NSF equations originating from the arguments of irreversible thermodynamics as well as being consistent with the kinetic theory of gases. The modelling approach allows us to derive new fundamental solutions for the linearised CCR model, to develop a numerical framework based upon the method of fundamental solutions (MFS) and enables three-dimensional multiphase micro-flow simulations to be performed at remarkably low computational cost. The new framework is benchmarked against classical results and then explored as an efficient tool for solving three-dimensional phase-change events involving droplets.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, M.D. & Raabe, O.G. 1982 Re-evaluation of Millikan's oil drop data for the motion of small particles in air. J. Aerosol. Sci. 13 (6), 537547.CrossRefGoogle Scholar
Beckmann, A.F., Rana, A.S., Torrilhon, M. & Struchtrup, H. 2018 Evaporation boundary conditions for the linear R13 equations based on the Onsager theory. Entropy 20, 680.CrossRefGoogle ScholarPubMed
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.Google Scholar
Bobylev, A.V. 2006 Instabilities in the Chapman–Enskog expansion and hyperbolic Burnett equations. J. Stat. Phys. 124, 371399.CrossRefGoogle Scholar
Bond, M. & Struchtrup, H. 2004 Mean evaporation and condensation coefficients based on energy dependent condensation probability. Phys. Rev. E 70, 061605.CrossRefGoogle ScholarPubMed
Cercignani, C. 2000 Rarefied Gas Dynamics: From Basic Concepts to Actual Calculations. Cambridge University Press.Google Scholar
Cercignani, C. & Lorenzani, S. 2010 Variational derivation of second-order slip coefficients on the basis of the boltzmann equation for hard-sphere molecules. Phys. Fluids 22 (6), 062004.CrossRefGoogle Scholar
Chakraborty, S. & Durst, F. 2007 Derivations of extended Navier–Stokes equations from upscaled molecular transport considerations for compressible ideal gas flows: towards extended constitutive forms. Phys. Fluids 19 (8), 088104.CrossRefGoogle Scholar
Chandrashekar, P. 2013 Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and Navier–Stokes equations. Commun. Comput. Phys. 14 (5), 12521286.CrossRefGoogle Scholar
Cheng, Y.-S., Allen, M.D., Gallegos, D.P., Yeh, H.-C. & Peterson, K. 1988 Drag force and slip correction of aggregate aerosols. Aerosol. Sci. Technol. 8, 199214.CrossRefGoogle Scholar
Chernyak, V.G. & Margilevskiy, A.Y. 1989 The kinetic theory of heat and mass transfer from a spherical particle in a rarefied gas. Intl J. Heat Mass Transfer 32, 21272134.CrossRefGoogle Scholar
Chubynsky, M.V., Belousov, K.I., Lockerby, D.A. & Sprittles, J.E. 2020 Bouncing off the walls: the influence of gas-kinetic and van der Waals effects in drop impact. Phys. Rev. Lett. 124, 084501.CrossRefGoogle Scholar
Claydon, R., Shrestha, A., Rana, A.S., Sprittles, J.E. & Lockerby, D.A. 2017 Fundamental solutions to the regularised 13-moment equations: efficient computation of three-dimensional kinetic effects. J. Fluid Mech. 833, R4.CrossRefGoogle Scholar
Dhavaleswarapu, H.K., Murthy, J.Y. & Garimella, S.V. 2012 Numerical investigation of an evaporating meniscus in a channel. Intl J. Heat Mass Transfer 55, 915924.CrossRefGoogle Scholar
Dongari, N., Chakraborty, S. & Durst, F. 2010 Predicting microscale gas flows and rarefaction effects through extended Navier–Stokes–Fourier equations from phoretic transport considerations. Microfluid Nanofluid 9, 831846.CrossRefGoogle Scholar
Eu, B.C. 1992 Kinetic Theory and Irreversible Thermodynamics. Wiley.Google Scholar
Evans, L. 2000 The Advent of Mechanical Refrigeration Alters Daily Life and National Economies throughout the World, p. 537. Science and its times, Gale Group.Google Scholar
Fan, C., Chen, C. & Monroe, J. 2009 The method of fundamental solutions for solving convection-diffusion equations with variable coefficients. Adv. Appl. Math. Mech. 1 (2), 215230.Google Scholar
Freund, R. & Nachtigal, N.M. 1991 QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315339.CrossRefGoogle Scholar
Frezzotti, A., Grosfils, P. & Toxvaerd, S. 2003 Evidence of an inverted temperature gradient during evaporation/condensation of a Lennard–Jones fluid. Phys. Fluids 15 (10), 28372842.CrossRefGoogle Scholar
Grad, H. 1949 a Note on $N$-dimensional Hermite polynomials. Commun. Pure Appl. Maths 2, 325330.CrossRefGoogle Scholar
Grad, H. 1949 b On the kinetic theory of rarefied gases. Commun. Pure Appl. Maths 2, 331407.CrossRefGoogle Scholar
Grad, H. 1958 Principles of the kinetic theory of gases. In Thermodynamik der Gase, Handbuch der Physik, vol. 3/12, pp. 205–294. Springer.CrossRefGoogle Scholar
de Groot, S.R. & Mazur, P. 1962 Non-Equilibrium Thermodynamics. North-Holland.Google Scholar
Gu, X.J. & Emerson, D.R. 2007 A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions. J. Comput. Phys. 225, 263283.CrossRefGoogle Scholar
Gu, X.J. & Emerson, D.R. 2009 A high-order moment approach for capturing non equilibrium phenomena in the transition regime. J. Fluid Mech. 636, 177216.CrossRefGoogle Scholar
Gyarmati, I. 1970 Non-Equilibrium Thermodynamics. Springer.CrossRefGoogle Scholar
Hadjiconstantinou, N.G. 2003 Comment on Cercignani's second-order slip coefficient. Phys. Fluids 15 (8), 23522354.CrossRefGoogle Scholar
Harten, A. 1983 On the symmetric form of systems of conservation laws with entropy. J. Comput. Phys. 49, 151164.CrossRefGoogle Scholar
Jiang, X., Wang, X.G., Bai, Y.W. & Pang, C.T. 2014 The method of fundamental solutions for the moving boundary problem of the one-dimension heat conduction equation. In Advanced Manufacturing and Automation, vol. 1039, pp. 59–64. Trans Tech Publications Ltd.CrossRefGoogle Scholar
Kjelstrup, S. & Bedeaux, D. 2008 Non-Equlibrium Thermodynamics of Heterogeneous Systems. World Scientific.CrossRefGoogle Scholar
Kremer, G.M. 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases. Springer.CrossRefGoogle Scholar
Kumar, H. & Mishra, S. 2012 Numerical schemes for two-fluid plasma equations. J. Sci. Comput. 52, 401425.CrossRefGoogle Scholar
Kupradze, V.D. & Aleksidze, M.D. 1964 The method of functional equations for the approximate solution of certain boundary value problems. J. Comput. Math. Phys. USSR 4, 82126.CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics, 6th edn. Dover.Google Scholar
Lebon, G., Jou, D. & Casas-Vázquez, J. 2008 Understanding Non-Equilibrium Thermodynamics. Springer.CrossRefGoogle Scholar
Liang, Z., Biben, T. & Keblinski, P. 2017 Molecular simulation of steady-state evaporation and condensation: validity of the Schrage relationships. Intl J. Heat Mass Transfer 114, 105114.CrossRefGoogle Scholar
Ling, Z., Zhang, Z., Shi, G., Fang, X., Wang, L., Gao, X., Fang, Y., Xu, T., Wang, S. & Liu, X. 2014 Review on thermal management systems using phase change materials for electronic components, li-ion batteries and photovoltaic modules. Renew. Sust. Energ. Rev. 31, 427.CrossRefGoogle Scholar
Liu, J., Gomez, H., Evans, J.A., Hughes, T.J. & Landis, C.M. 2013 Functional entropy variables: a new methodology for deriving thermodynamically consistent algorithms for complex fluids, with particular reference to the isothermal Navier–Stokes–Korteweg equations. J. Comput. Phys. 248, 4786.CrossRefGoogle Scholar
Lockerby, D.A. & Collyer, B. 2016 Fundamental solutions to moment equations for the simulation of microscale gas flows. J. Fluid Mech. 806, 413436.CrossRefGoogle Scholar
Lopes, D.S., Silva, M.T. & Ambrósio, J.A. 2013 Tangent vectors to a 3-d surface normal: a geometric tool to find orthogonal vectors based on the householder transformation. Comput.-Aided Des. 45, 683694.CrossRefGoogle Scholar
McElroy, P.J. 1979 Surface tension and its effect on vapor pressure. J. Colloid Interface Sci. 72 (1), 147149.CrossRefGoogle Scholar
McGaughey, A.J.H. & Ward, C.A. 2002 Temperature discontinuity at the surface of an evaporating droplet. J. Appl. Phys. 91 (10), 64066415.CrossRefGoogle Scholar
Millikan, R.A. 1923 Coefficients of slip in gases and the law of reflection of molecules from the surfaces of solids and liquids. Phys. Rev. 21 (3), 217238.CrossRefGoogle Scholar
Müller, I. & Ruggeri, T. 1998 Rational Extended Thermodynamics. Springer.CrossRefGoogle Scholar
Myong, R.S. 2014 On the high Mach number shock structure singularity caused by overreach of Maxwellian molecules. Phys. Fluids 26 (5), 056102.CrossRefGoogle Scholar
Onsager, L. 1931 Reciprocal relations in irreversible processes. II. Phys. Rev. 38, 22652279.CrossRefGoogle Scholar
Öttinger, H. 2010 Thermodynamically admissible 13 moment equations from the Boltzmann equation. Phys. Rev. Lett. 104, 120601.CrossRefGoogle ScholarPubMed
Pao, Y. 1971 Application of kinetic theory to the problem of evaporation and condensation. Phys. Fluids 14 (2), 306312.CrossRefGoogle Scholar
Paolucci, S. & Paolucci, C. 2018 A second-order continuum theory of fluids. J. Fluid Mech. 846, 686710.CrossRefGoogle Scholar
Plawsky, J.L., Fedorov, A.G., Garimella, S.V., Ma, H.B., Maroo, S.C., Chen, L. & Nam, Y. 2014 Nano- and microstructures for thin-film evaporation—a review. Nanoscale Microscale Thermophys. Engng 18, 251269.CrossRefGoogle Scholar
Rana, A.S., Gupta, V.K. & Struchtrup, H. 2018 a Coupled constitutive relations: a second law based higher-order closure for hydrodynamics. Proc. R. Soc. Lond. A 474, 20180323.Google ScholarPubMed
Rana, A.S., Lockerby, D.A. & Sprittles, J.E. 2018 b Evaporation-driven vapour microflows: analytical solutions from moment methods. J. Fluid Mech. 841, 962988.CrossRefGoogle Scholar
Rana, A.S., Lockerby, D.A. & Sprittles, J.E. 2019 Lifetime of a nanodroplet: kinetic effects and regime transitions. Phys. Rev. Lett. 123, 154501.CrossRefGoogle ScholarPubMed
Rana, A.S. & Struchtrup, H. 2016 Thermodynamically admissible boundary conditions for the regularized 13 moment equations. Phys. Fluids 28, 027105.CrossRefGoogle Scholar
Sarna, N. & Torrilhon, M. 2018 On stable wall boundary conditions for the Hermite discretization of the linearised Boltzmann equation. J. Stat. Phys. 170, 101126.CrossRefGoogle Scholar
Schrage, R.W. 1953 A Theoretical Study of Interphase Mass Transfer. Columbia University Press.CrossRefGoogle Scholar
Schweizer, M., Öttinger, H.C. & Savin, T. 2016 Nonequilibrium thermodynamics of an interface. Phys Rev. E 93, 052803.CrossRefGoogle ScholarPubMed
Sherwood, L. 2005 Fundamentals of Physiology: A Human Perspective. Brooks/Cole.Google Scholar
Sone, Y. 2007 Molecular Gas Dynamics: Theory, Techniques, and Applications. Birkhäuser.CrossRefGoogle Scholar
Sone, Y., Takata, S. & Wakabayashi, M. 1994 Numerical analysis of a rarefied gas flow past a volatile particle using the Boltzmann equation for hardsphere molecules. Phys. Fluids 6, 1914.CrossRefGoogle Scholar
Sprittles, J.E. & Shikhmurzaev, Y.D. 2012 The dynamics of liquid drops and their interaction with solids of varying wettabilities. Phys. Fluids 24, 082001.CrossRefGoogle Scholar
Stimson, M., Jeffery, G.B. & Filon, L.N.G. 1926 The motion of two spheres in a viscous fluid. Proc. R. Soc. Lond. A 111 (757), 110116.Google Scholar
Struchtrup, H. 2005 Macroscopic Transport Equations for Rarefied Gas Flows. Springer.CrossRefGoogle Scholar
Struchtrup, H., Beckmann, A., Rana, A.S. & Frezzotti, A. 2017 Evaporation boundary conditions for the R13 equations of rarefied gas dynamics. Phys. Fluids 29, 092004.CrossRefGoogle Scholar
Struchtrup, H. & Nadler, B. 2020 Are waves with negative spatial damping unstable? Wave Motion 97, 102612.CrossRefGoogle Scholar
Struchtrup, H. & Torrilhon, M. 2007 $h$ theorem, regularization, and boundary conditions for linearized 13 moment equations. Phys. Rev. Lett. 99, 014502.CrossRefGoogle ScholarPubMed
Struchtrup, H. & Torrilhon, M. 2008 Higher-order effects in rarefied channel flows. Phys. Rev. E 78, 046301.CrossRefGoogle ScholarPubMed
Struchtrup, H. & Torrilhon, M. 2010 Comment on “Thermodynamically admissible 13 moment equations from the Boltzmann equation”. Phys. Rev. Lett. 105, 128901.CrossRefGoogle Scholar
Tadmor, E. & Zhong, W. 2006 Entropy stable approximations of Navier–Stokes equations with no artificial numerical viscosity. J. Hyperbol. Differ. Eq. 03 (03), 529559.CrossRefGoogle Scholar
Takata, S., Sone, Y., Lhuillier, D. & Wakabayashi, M. 1998 Evaporation from or condensation onto a sphere: numerical analysis of the Boltzmann equation for hard-sphere molecules. Comput. Maths Applics. 35, 193214.CrossRefGoogle Scholar
Torrilhon, M. 2012 H-Theorem for nonlinear regularized 13-moment equations in kinetic gas theory. Kinet. Relat. Mod. 5, 185201.CrossRefGoogle Scholar
Torrilhon, M. 2016 Modeling nonequilibrium gas flow based on moment equations. Annu. Rev. Fluid Mech. 48, 429458.CrossRefGoogle Scholar
Torrilhon, M. & Sarna, N. 2017 Hierarchical Boltzmann simulations and model error estimation. J. Comput. Phys. 342, 6684.CrossRefGoogle Scholar
Torrilhon, M. & Struchtrup, H. 2008 Boundary conditions for regularized 13-moment equations for micro-channel-flows. J. Comput. Phys. 227, 19822011.CrossRefGoogle Scholar
Ward, C.A. & Fang, G. 1999 Expression for predicting liquid evaporation flux: statistical rate theory approach. Phys. Rev. E 59, 429440.CrossRefGoogle Scholar
Zinner, C.P. & Öttinger, H.C. 2019 Entropic boundary conditions for 13 moment equations in rarefied gas flows. Phys. Fluids 31 (2), 021215.CrossRefGoogle Scholar