Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T04:02:01.377Z Has data issue: false hasContentIssue false

Effects of horizontal magnetic fields on turbulent Rayleigh–Bénard convection in a cuboid vessel with aspect ratio Γ = 5

Published online by Cambridge University Press:  31 January 2024

Long Chen
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Zhao-Bo Wang
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Ming-Jiu Ni*
School of Engineering Science, University of Chinese Academy of Sciences, Beijing 101408, PR China
Email address for correspondence:


Direct numerical simulations have been conducted to investigate turbulent Rayleigh– Bénard convection (RBC) of liquid metal in a cuboid vessel with aspect ratio $\varGamma =5$ under an imposed horizontal magnetic field. Flows with Prandtl number $Pr=0.033$, Rayleigh numbers ranging up to $Ra\leq 10^{7}$, and Chandrasekhar numbers up to $Q\leq 9 \times 10^6$ are considered. For weak magnetic fields, our findings reveal that a previously undiscovered decreasing region precedes the enhancement of heat transfer and kinetic energy. For moderate magnetic fields, we have reproduced the reversals of the large-scale flow, which are considered a reorganization process of the roll-like structures that were reported experimentally by Yanagisawa et al. (Phys. Rev. E, vol. 83, 2011, 036307). Nevertheless, the proposed approach of skewed-varicose instability has been substantiated as insufficient to elucidate fundamentally the phenomenon of flow reversal, an occurrence bearing a striking resemblance to the large-scale intermittency observed in magnetic channel flows. As we increase the magnetic field strength further, we observe that the energy dissipation of the system comes primarily from the viscous dissipation within the boundary layer. Consequently, the dependence of Reynolds number $Re$ on $Q$ approaches a scaling as $Re\,Pr/Ra^{2/3} \sim Q^{-1/3}$. At the same time, we find the law for the cutoff frequency that separates large quasi-two-dimensional scales from small three-dimensional ones in RBC flow, which scales with the interaction parameter as ${\sim }N^{1/3}$.

JFM Papers
© The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Akhmedagaev, R., Zikanov, O., Krasnov, D. & Schumacher, J. 2020a Rayleigh–Bénard convection in strong vertical magnetic field: flow structure and verification of numerical method. Magnetohydrodynamics 56 (2–3), 157165.Google Scholar
Akhmedagaev, R., Zikanov, O., Krasnov, D. & Schumacher, J. 2020 b Turbulent Rayleigh–Bénard convection in a strong vertical magnetic field. J. Fluid Mech. 895, R4.CrossRefGoogle Scholar
Baker, N.T., Pothérat, A., Davoust, L. & Debray, F. 2018 Inverse and direct energy cascades in three-dimensional magnetohydrodynamic turbulence at low magnetic Reynolds number. Phys. Rev. Lett. 120 (22), 224502.CrossRefGoogle ScholarPubMed
Boeck, T., Krasnov, D., Thess, A. & Zikanov, O. 2008 Large-scale intermittency of liquid-metal channel flow in a magnetic field. Phys. Rev. Lett. 101 (24), 244501.CrossRefGoogle ScholarPubMed
Burr, U. & Müller, U. 2002 Rayleigh–Bénard convection in liquid metal layers under the influence of a horizontal magnetic field. J. Fluid Mech. 453, 345369.CrossRefGoogle Scholar
Busse, F.H. 1978 Non-linear properties of thermal convection. Rep. Prog. Phys. 41 (12), 1929.CrossRefGoogle Scholar
Busse, F.H. & Clever, R.M. 1983 Stability of convection rolls in the presence of a horizontal magnetic field. J. Méc. Théor. Appl. 2 (4), 495502.Google Scholar
Busse, F.H., Kropp, M. & Zaks, M. 1992 Spatio-temporal structures in phase-turbulent convection. Physica D 61 (1–4), 94105.CrossRefGoogle Scholar
Chakraborty, S. 2008 On scaling laws in turbulent magnetohydrodynamic Rayleigh–Bénard convection. Physica D 237 (24), 32333236.CrossRefGoogle Scholar
Chen, L., Liu, B.-Q. & Ni, M.-J. 2018 Study of natural convection in a heated cavity with magnetic fields normal to the main circulation. Intl J. Heat Mass Transfer 127, 267277.CrossRefGoogle Scholar
Chen, L., Pothérat, A., Ni, M.-J. & Moreau, R. 2021 Direct numerical simulation of quasi-two-dimensional MHD turbulent shear flows. J. Fluid Mech. 915.CrossRefGoogle Scholar
Cioni, S., Chaumat, S. & Sommeria, J. 2000 Effect of a vertical magnetic field on turbulent Rayleigh–Bénard convection. Phys. Rev. E 62 (4), R4520.CrossRefGoogle ScholarPubMed
Davidson, P.A. 2002 An Introduction to Magnetohydrodynamics. Cambridge University Press.Google Scholar
Eckert, S., Gerbeth, G., Witke, W. & Langenbrunner, H. 2001 MHD turbulence measurements in a sodium channel flow exposed to a transverse magnetic field. Intl J. Heat Fluid Flow 22 (3), 358364.CrossRefGoogle Scholar
Greenside, H.S., Cross, M.C. & Coughran, W.M. Jr 1988 Mean flows and the onset of chaos in large-cell convection. Phys. Rev. Lett. 60 (22), 2269.CrossRefGoogle ScholarPubMed
Grossmann, S. & Lohse, D. 2000 Scaling in thermal convection: a unifying theory. J. Fluid Mech. 407, 2756.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl numbers. Phys. Rev. Lett. 86 (15), 33163319.CrossRefGoogle ScholarPubMed
Houchens, B.C., Witkowski, L.M. & Walker, J.S. 2002 Rayleigh–Bénard instability in a vertical cylinder with a vertical magnetic field. J. Fluid Mech. 469, 189207.CrossRefGoogle Scholar
Klein, R. & Pothérat, A. 2010 Appearance of three dimensionality in wall-bounded MHD flows. Phys. Rev. Lett. 104 (3), 034502.CrossRefGoogle ScholarPubMed
Krishnamurti, R. & Howard, L.N. 1981 Large-scale flow generation in turbulent convection. Proc. Natl Acad. Sci. USA 78 (4), 19811985.CrossRefGoogle ScholarPubMed
Kumar, A. & Verma, M.K. 2018 Applicability of Taylor's hypothesis in thermally driven turbulence. R. Soc. Open Sci. 5 (4), 172152.CrossRefGoogle ScholarPubMed
Lim, Z.L., Chong, K.L., Ding, G.-Y. & Xia, K.-Q. 2019 Quasistatic magnetoconvection: heat transport enhancement and boundary layer crossing. J. Fluid Mech. 870, 519542.CrossRefGoogle Scholar
Liu, C.Q., Wang, Y.Q., Yang, Y. & Duan, Z.W. 2016 New omega vortex identification method. Sci. China Phys. Mech. 59 (8), 19.CrossRefGoogle Scholar
Liu, W. 2019 Numerical studies of turbulent Rayleigh–Bénard magnetoconvection in rectangular enclosures. PhD thesis, Technische Universität Ilmenau.Google Scholar
Liu, W., Krasnov, D. & Schumacher, J. 2018 Wall modes in magnetoconvection at high Hartmann numbers. J. Fluid Mech. 849, R2.CrossRefGoogle Scholar
Pothérat, A. & Klein, R. 2014 Why, how and when MHD turbulence at low $Rm$ becomes three-dimensional. J. Fluid Mech. 761, 168205.CrossRefGoogle Scholar
Pothérat, A. & Klein, R. 2017 Do magnetic fields enhance turbulence at low magnetic Reynolds number? Phys. Rev. Fluids 2 (6), 063702.CrossRefGoogle Scholar
Shraiman, B.I. & Siggia, E.D. 1990 Heat transport in high-Rayleigh-number convection. Phys. Rev. A 42 (6), 3650.CrossRefGoogle ScholarPubMed
Sommeria, J. & Moreau, R. 1982 Why, how, and when, MHD turbulence becomes two-dimensional. J. Fluid Mech. 118, 507518.CrossRefGoogle Scholar
Sukoriansky, S., Zilberman, I. & Branover, H. 1986 Experimental studies of turbulence in mercury flows with transverse magnetic fields. Exp. Fluids 4 (1), 1116.CrossRefGoogle Scholar
Tasaka, Y., Igaki, K., Yanagisawa, T., Vogt, T., Zuerner, T. & Eckert, S. 2016 Regular flow reversals in Rayleigh–Bénard convection in a horizontal magnetic field. Phys. Rev. E 93 (4), 043109.CrossRefGoogle Scholar
Thess, A. & Zikanov, O. 2007 Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence. J. Fluid Mech. 579, 383412.CrossRefGoogle Scholar
Vogt, T., Ishimi, W., Yanagisawa, T., Tasaka, Y., Sakuraba, A. & Eckert, S. 2018 Transition between quasi-two-dimensional and three-dimensional Rayleigh–Bénard convection in a horizontal magnetic field. Phys. Rev. Fluids 3 (1), 013503.CrossRefGoogle Scholar
Vogt, T., Yang, J.-C., Schindler, F. & Eckert, S. 2021 Free-fall velocities and heat transport enhancement in liquid metal magneto-convection. J. Fluid Mech. 915, A68.CrossRefGoogle Scholar
Yanagisawa, T., Hamano, Y., Miyagoshi, T., Yamagishi, Y., Tasaka, Y. & Takeda, Y. 2013 Convection patterns in a liquid metal under an imposed horizontal magnetic field. Phys. Rev. E 88 (6), 063020.CrossRefGoogle Scholar
Yanagisawa, T., Hamano, Y. & Sakuraba, A. 2015 Flow reversals in low-Prandtl-number Rayleigh–Bénard convection controlled by horizontal circulations. Phys. Rev. E 92 (2), 023018.CrossRefGoogle ScholarPubMed
Yanagisawa, T., Yamagishi, Y., Hamano, Y., Tasaka, Y. & Takeda, Y. 2011 Spontaneous flow reversals in Rayleigh–Bénard convection of a liquid metal. Phys. Rev. E 83 (3), 036307.CrossRefGoogle ScholarPubMed
Yang, J.C., Vogt, T. & Eckert, S. 2021 Transition from steady to oscillating convection rolls in Rayleigh–Bénard convection under the influence of a horizontal magnetic field. Phys. Rev. Fluids 6 (2), 023502.CrossRefGoogle Scholar
Zikanov, O., Krasnov, D., Boeck, T. & Sukoriansky, S. 2019 Decay of turbulence in a liquid metal duct flow with transverse magnetic field. J. Fluid Mech. 867, 661690.CrossRefGoogle Scholar
Zikanov, O. & Thess, A. 1998 Direct numerical simulation of forced MHD turbulence at low magnetic Reynolds number. J. Fluid Mech. 358, 299333.CrossRefGoogle Scholar
Zuerner, T., Liu, W., Krasnov, D. & Schumacher, J. 2016 Heat and momentum transfer for magnetoconvection in a vertical external magnetic field. Phys. Rev. E 94 (4), 043108.CrossRefGoogle Scholar
Zürner, T. 2020 Refined mean field model of heat and momentum transfer in magnetoconvection. Phys. Fluids 32 (10), 107101.CrossRefGoogle Scholar