Hostname: page-component-cc8bf7c57-7lvjp Total loading time: 0 Render date: 2024-12-09T11:47:02.638Z Has data issue: false hasContentIssue false

Effect of transverse temperature gradient on the migration of a deformable droplet in a Poiseuille flow

Published online by Cambridge University Press:  12 July 2018

Sayan Das
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
Shubhadeep Mandal
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
Suman Chakraborty*
Affiliation:
Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, Kharagpur – 721302, India
*
Email address for correspondence: suman@mech.iitkgp.ernet.in

Abstract

Intricate manipulation of droplets in fluidic confinements may turn out to be critically important for achieving their controlled transverse distributions. Here, we study the migration characteristics of a suspended deformable droplet in a parallel plate channel under the combined influence of a constant temperature gradient in the transverse direction and an imposed pressure driven flow. An outstanding question concerning the resultant non-trivial dynamical features that we address here pertains to the nonlinearity that results as a consequence of the shape deformation, which does not permit us to analyse the combined transport as a mere linear superposition of the results for the thermocapillary and imposed flow driven droplet migration in an effort to obtain the final solution. For the analytical solution, an asymptotic approach is used, where we neglect any effect of inertia or thermal convection of the fluid in either of the phases. To obtain a numerical solution, we use the conservative level set method. We perform numerical simulations over a wide range of governing parameters and obtain the dependence of the transverse steady position of the droplet on different parameters. In order to address practical microfluidic set-ups, the influence of a bounding wall as well as the effect of thermal convection and finite shape deformation on the cross-stream migration of the droplet is investigated through numerical simulations. Increase in the thermal Marangoni stress shifts the steady-state transverse position of the droplet further away from the channel centreline, for any particular value of the capillary number (which signifies the ratio of the viscous force to the surface tension force). The confinement ratio, which is the ratio of the droplet radius to the channel height, plays an important role in predicting the transverse position of the droplet and thus has immense consequences for the design of droplet-based microfluidic devices with enhanced functionalities. A large confinement ratio drives the droplet towards the channel centre, whereas a smaller confinement ratio causes the droplet to move towards the wall. Moreover, for a fixed droplet radius and constant imposed temperature gradient, an increase in the channel height results in an increase in the time required for the droplet to reach the steady-state position. However, the final steady-state position of the droplet is independent of its initial position but at the same time dependent on the droplet phase thermal conductivity. A larger droplet thermal conductivity compared with the carrier phase results in a steady-state droplet position closer to the channel centreline. A higher fluid inertia, on the other hand, shifts the steady-state position towards the channel wall.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, K., Kerbage, C., Hunt, T. P., Westervelt, R. M., Link, D. R. & Weitz, D. A. 2006 Dielectrophoretic manipulation of drops for high-speed microfluidic sorting devices. Appl. Phys. Lett. 88 (2), 24104.Google Scholar
Anna, S. L. 2016 Droplets and bubbles in microfluidic devices. Annu. Rev. Fluid Mech. 48 (1), 285309.Google Scholar
Balasubramaniam, R. & Lavery, J. E. 1989 Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers. Numer. Heat Transfer A 16 (2), 175187.Google Scholar
Balasubramaniam, R. & Subramaniam, R. S. 1996 Thermocapillary bubble migration – thermal boundary layers for large Marangoni numbers. Intl J. Multiphase Flow 22 (3), 593612.Google Scholar
Balasubramaniam, R. & Subramanian, R. S. 2004 Thermocapillary convection due to a stationary bubble. Phys. Fluids 16 (8), 31313137.Google Scholar
Balcázar, N., Oliva, A. & Rigola, J. 2016 A level-set method for thermal motion of bubbles and droplets. J. Phys.: Conf. Ser. 745, 32113.Google Scholar
Bandopadhyay, A., Mandal, S., Kishore, N. K. & Chakraborty, S. 2016 Uniform electric-field-induced lateral migration of a sedimenting drop. J. Fluid Mech. 792, 553589.Google Scholar
Baroud, C. N., Gallaire, F. & Dangla, R. 2010 Dynamics of microfluidic droplets. Lab on a Chip 10 (16), 20322045.Google Scholar
Barton, K. D. & Shankar Subramanian, R. 1990 Thermocapillary migration of a liquid drop normal to a plane surface. J. Colloid Interface Sci. 137 (1), 170182.Google Scholar
Barton, K. D. & Subramanian, R. S. 1991 Migration of liquid drops in a vertical temperature gradient – interaction effects near a horizontal surface. J. Colloid Interface Sci. 141 (1), 146156.Google Scholar
Casadevall i Solvas, X. & DeMello, A. J. 2011 Droplet microfluidics: recent developments and future applications. Chem. Commun. (Camb). 47 (7), 19361942.Google Scholar
Chan, P. C.-H. & Leal, L. G. 1979 The motion of a deformable drop in a second-order fluid. J. Fluid Mech. 92 (1), 131170.Google Scholar
Chen, S. H. 1999 Thermocapillary deposition of a fluid droplet normal to a planar surface. Langmuir 15 (8), 26742683.Google Scholar
Chen, S. H. 2003 Thermocapillary coagulations of a fluid sphere and a gas bubble. Langmuir 19 (11), 45824591.Google Scholar
Choudhuri, D. & Raja Sekhar, G. P. 2013 Thermocapillary drift on a spherical drop in a viscous fluid. Phys. Fluids 25 (4), 043104.Google Scholar
Das, S., Mandal, S., Som, S. K. & Chakraborty, S. 2017 Migration of a surfactant-laden droplet in non-isothermal Poiseuille flow. Phys. Fluids 29 (1), 12002.Google Scholar
Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. 2007 Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104 (48), 1889218897.Google Scholar
Haj-Hariri, H., Nadim, A. & Borhan, A. 1990 Effect of inertia on the thermocapillary velocity of a drop. J. Colloid Interface Sci. 140 (1), 277286.Google Scholar
Haj-Hariri, H., Shi, Q. & Borhan, A. 1997 Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Phys. Fluids 9 (4), 845855.Google Scholar
Hetsroni, G. & Haber, S. 1970 The flow in and around a droplet or bubble submerged in an unbound arbitrary velocity field. Rheol. Acta 9 (4), 488496.Google Scholar
Huebner, A., Sharma, S., Srisa-Art, M., Hollfelder, F., Edel, J. B. & Demello, A. J. 2008 Microdroplets: a sea of applications? Lab on a Chip 8 (8), 12441254.Google Scholar
Karbalaei, A., Kumar, R. & Cho, H. J. 2016 Thermocapillarity in microfluidics – a review. Micromachines 7 (1), 141.Google Scholar
Kim, H. S. & Subramanian, R. S. 1989 The thermocapillary migration of a droplet with insoluble surfactant: II. General case. J. Colloid Interface Sci. 130 (1), 112129.Google Scholar
Kim, J. H., Jeon, T. Y., Choi, T. M., Shim, T. S., Kim, S.-H. & Yang, S.-M. 2014 Droplet microfluidics for producing functional microparticles. Langmuir 30 (6), 14731488.Google Scholar
Kinoshita, H., Kaneda, S., Fujii, T. & Oshima, M. 2007 Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. Lab on a Chip 7 (3), 338346.Google Scholar
Leal, L. G. 1980 Particle motions in a viscous fluid. Annu. Rev. Fluid Mech. 12 (1), 435476.Google Scholar
Link, D. R., Grasland-Mongrain, E., Duri, A., Sarrazin, F., Cheng, Z., Cristobal, G., Marquez, M. & Weitz, D. A. 2006 Electric control of droplets in microfluidic devices. Angew. Chem. Intl Ed. Engl. 45 (16), 25562560.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2015 Effect of interfacial slip on the cross-stream migration of a drop in an unbounded Poiseuille flow. Phys. Rev. E 92 (2), 23002.Google Scholar
Mandal, S., Bandopadhyay, A. & Chakraborty, S. 2016 Dielectrophoresis of a surfactant – laden viscous drop. Phys. Fluids 62006 (28), 62006.Google Scholar
Meyyappan, M. & Subramanian, R. S. 1987 Thermocapillary migration of a gas bubble in an arbitrary direction with respect to a plane surface. J. Colloid Interface Sci. 115 (1), 206219.Google Scholar
Mortazavi, S. & Tryggvason, G. 2000 A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop. J. Fluid Mech. 411, 325350.Google Scholar
Murr, L. E. & Johnson, W. L. 2017 3D metal droplet printing development and advanced materials additive manufacturing. J. Mater. Res. Technol. 6, 7789.Google Scholar
Nadim, A., Haj-Hariri, H. & Borhan, A. 1990 Thermocapillary migration of slightly deformed droplets. Part. Sci. Technol. 8 (3–4), 191198.Google Scholar
Nas, S. & Tryggvason, G. 2003 Thermocapillary interaction of two bubbles or drops. Intl J. Multiphase Flow 29 (7), 11171135.Google Scholar
Nguyen, H.-B. & Chen, J.-C. 2010 A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface. Phys. Fluids 22 (6), 62102.Google Scholar
Olsson, E. & Kreiss, G. 2005 A conservative level set method for two phase flow. J. Comput. Phys. 225 (1), 785807.Google Scholar
Pak, O. S., Feng, J. & Stone, H. A. 2014 Viscous Marangoni migration of a drop in a Poiseuille flow at low surface Péclet numbers. J. Fluid Mech. 753, 535552.Google Scholar
Robert de Saint Vincent, M., Wunenburger, R. & Delville, J. 2008 Laser switching and sorting for high speed digital microfluidics. Appl. Phys. Lett. 92, 154105.Google Scholar
Sajeesh, P. & Sen, A. K. 2014 Particle separation and sorting in microfluidic devices: a review. Microfluid Nanofluid 17 (1), 152.Google Scholar
Seemann, R., Brinkmann, M., Pfohl, T. & Herminghaus, S. 2012 Droplet based microfluidics. Rep. Prog. Phys. 75 (75), 1660116641.Google Scholar
Sethian, J. A. & Smereka, P. 2003 Level set methods for fluid interfaces. Annu. Rev. Fluid Mech. 35 (1), 341372.Google Scholar
Stan, C. A., Guglielmini, L., Ellerbee, A. K., Caviezel, D., Stone, H. A. & Whitesides, G. M. 2011 Sheathless hydrodynamic positioning of buoyant drops and bubbles inside microchannels. Phys. Rev. E 84 (3), 036302.Google Scholar
Stone, H. A., Stroock, A. D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.Google Scholar
Subramanian, R. S. 1983 Thermocapillary migration of bubbles and droplets. Adv. Space Res. 3 (5), 145153.Google Scholar
Teh, S.-Y., Lin, R., Hung, L.-H. & Lee, A. P. 2008 Droplet microfluidics. Lab on a Chip 8 (2), 198220.Google Scholar
Uijttewaal, W. S. J. & Nijhof, E. J. 1995 The motion of a droplet subjected to linear shear flow including the presence of a plane wall. J. Fluid Mech. 302, 4563.Google Scholar
Uijttewaal, W. S. J., Nijhof, E.-J. & Heethaar, R. M. 1993 Droplet migration, deformation, and orientation in the presence of a plane wall: a numerical study compared with analytical theories. Phys. Fluids A 5 (4), 819.Google Scholar
Wang, J., Lu, P., Wang, Z., Yang, C. & Mao, Z.-S. 2008 Numerical simulation of unsteady mass transfer by the level set method. Chem. Engng Sci. 63 (12), 31413151.Google Scholar
Ward, T., Faivre, M., Abkarian, M. & Stone, H. A. 2005 Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping. Electrophoresis 26 (19), 37163724.Google Scholar
Wu, Z.-B. & Hu, W.-R. 2011 Thermocapillary migration of a planar droplet at moderate and large Marangoni numbers. Acta Mech. 223 (3), 609626.Google Scholar
Yariv, E. & Shusser, M. 2006 On the paradox of thermocapillary flow about a stationary bubble. Phys. Fluids 18 (7), 072101.Google Scholar
Young, N. O., Goldstein, J. S. & Block, M. J. 1959 The motion of bubbles in a vertical temperature gradient. J. Fluid Mech. 6 (3), 350356.Google Scholar
Zhang, L., Subramanian, R. S. & Balasubramaniam, R. 2001 Motion of a drop in a vertical temperature gradient at small Marangoni number – the critical role of inertia. J. Fluid Mech. 448, 197211.Google Scholar
Zhou, H. & Pozrikidis, C. 1993 The flow of suspensions in channels: single files of drops. Phys. Fluids A 5 (2), 311324.Google Scholar
Zhou, H. & Pozrikidis, C. 1994 Pressure-driven flow of suspensions of liquid drops. Phys. Fluids 6 (1), 8094.Google Scholar
Zhu, Y. & Fang, Q. 2013 Analytical detection techniques for droplet microfluidics – a review. Anal. Chim. Acta 787, 2435.Google Scholar
Supplementary material: File

Das et al. supplementary material

Das et al. supplementary material 1

Download Das et al. supplementary material(File)
File 32.3 KB