Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s5ss2 Total loading time: 0.414 Render date: 2021-03-04T07:48:35.440Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Dynamics and control of premixed combustion systems based on flame transfer and describing functions

Published online by Cambridge University Press:  01 May 2020

Thierry Schuller
Affiliation:
Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS,31400Toulouse, France
Thierry Poinsot
Affiliation:
Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS,31400Toulouse, France
Sébastien Candel
Affiliation:
Laboratoire EM2C, CNRS, CentraleSupélec, Université Paris-Saclay, 3, rue Joliot Curie,91192Gif-sur-Yvette CEDEX, France
Corresponding
E-mail address:

Abstract

This article describes recent progress on premixed flame dynamics interacting with acoustic waves. Expressions are derived to determine the stability of combustors with respect to thermoacoustic oscillations. The validity of these expressions is general, but they are illustrated in laminar systems. Laminar burners are commonly used to elucidate the response of premixed flames to incoming flow perturbations, highlight the role of acoustic radiation in their stability, identify modes associated with thermoacoustic intrinsic instabilities and decipher the leading mechanisms in annular systems with multiple injectors. Many industrial devices also operate in a laminar premixed mode such as, for example, domestic gas boilers and heaters equipped with matrix burners for material processing in which unconfined flames are stabilized at one extremity of the system. This article proposes a systematic approach to determine the stability of all these systems with respect to thermoacoustic oscillations by highlighting the key role of the burner impedance and the flame transfer function (FTF). This transfer function links in frequency space incoming flow perturbations to heat release rate disturbances. This concept can be used in the turbulent flame case as well. Weakly nonlinear stability analysis can also easily be conducted by replacing the FTF by a flame describing function in the expressions derived in this work. The response of premixed flames to harmonic mixture compositions and flow-rate perturbations is then revisited and the main parameters controlling the FTF are described. A theoretical framework is finally developed to reduce the system thermoacoustic sensitivity by tailoring the FTF.

Type
JFM Perspectives
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

References

Baade, P. K. 1978 Design criteria and models for preventing combustion oscillations. ASHRAE Trans. 84, 449465.Google Scholar
Baillot, F., Bourehla, A. & Durox, D. 1996 The characteristics method and cusped flame fronts. Combust. Sci. Technol. 112, 327350.CrossRefGoogle Scholar
Baillot, F., Durox, D. & Prud’Homme, R. 1992 Experimental and theoeretical study of a premixed vibrating flame. Combust. Flame 88, 149168.CrossRefGoogle Scholar
Baillot, F. & Lespinasse, F. 2013 Responses of laminar premixed V-flames to a high frequency transverse acoustic field. Combust. Flame 161, 12471267.CrossRefGoogle Scholar
Bauerheim, M., Nicoud, F. & Poinsot, T. 2015 Theoretical analysis of the mass balance equation through a flame at zero and non-zero Mach numbers. Combust. Flame 162, 6067.CrossRefGoogle Scholar
Birbaud, A. L., Ducruix, S., Durox, D. & Candel, S. 2008 The nonlinear response of inverted V flames to equivalence ratio nonuniformities. Combust. Flame 154, 356367.CrossRefGoogle Scholar
Birbaud, A. L., Durox, D. & Candel, S. 2006 Upstream flow dynamics of a laminar premixed conical flame submitted to acoustic modulations. Combust. Flame 146, 541552.CrossRefGoogle Scholar
Birbaud, A. L., Durox, D., Ducruix, S. & Candel, S. 2007 Dynamics of free jets submitted to upstream acoustic modulations. Phys. Fluids 19, 013602.CrossRefGoogle Scholar
Blanchard, M., Sipp, D., Schuller, T. & Schmid, P. J. 2015 Response analysis of a laminar premixed M-flame to flow perturbations with a linearized Navier–Stokes solver. Phys. Fluids 27, 043602.CrossRefGoogle Scholar
Blumenthal, R. S., Subramanian, P., Sujith, R. I. & Polifke, W. 2013 Novel perspectives on the dynamics of premixed flames. Combust. Flame 160, 12151224.CrossRefGoogle Scholar
Bomberg, S., Emmert, T. & Polifke, W. 2015 Thermal versus acoustic response of velocity sensitive premixed flames. Proc. Combust. Inst. 35, 31853192.CrossRefGoogle Scholar
Boudy, F.2012 Analyse de la dynamique non-linéaire et du contrôle des instabilités de combustion fondée sur la ‘flame describing function’ (FDF). PhD thesis, Ecole Centrale Paris.Google Scholar
Bourgouin, J.-F., Durox, D., Moeck, J. P., Schuller, T. & Candel, S. 2015 Characterization and modeling of a spinning thermoacoustic instability in an annular combustor equipped with multiple matrix burners. Trans. ASME J. Engng Gas Turbines Power 137, 021503.CrossRefGoogle Scholar
Boyer, L. & Quinard, J. 1990 On the dynamics of anchored flames. Combust. Flame 82, 5165.CrossRefGoogle Scholar
Candel, S. 2002 Combustion dynamics and control: progress and challenges. Proc. Combust. Inst. 29, 128.CrossRefGoogle Scholar
Candel, S., Huynh, C. & Poinsot, T. 1996 Some modeling methods of combustion instabilities. In Unsteady Combustion, Nato ASI Series, pp. 83112. Kluwer Academic Publishers.CrossRefGoogle Scholar
Cantrell, R. H. & Hart, R. W. 1964 Interaction between sound and flow in cavities: Mass, momentum and energy considerations. J. Acoust. Soc. Am. 56, 697706.CrossRefGoogle Scholar
Chapparro, A., Landry, E. & Cetegen, B. M. 2006 Transfer function characteristics of bluff-body stabilized, conical V-shaped premixed turbulent propane–air flames. Combust. Flame 145, 290299.CrossRefGoogle Scholar
Chen, L. S., Bomberg, S. & Polifke, W. 2016 Propagation and generation of acoustic and entropy waves across a moving flame front. Combust. Flame 166, 170180.CrossRefGoogle Scholar
Cho, J. H. & Lieuwen, T. 2005 Laminar premixed flame response to equivalence ratio oscillations. Combust. Flame 140, 116129.CrossRefGoogle Scholar
Courtine, E., Selle, L., Nicoud, F., Polifke, W., Silva, C. F., Bauerheim, M. & Poinsot, T. 2014 Causality and intrinsic thermoacoustic instability modes. In Proceedings of the Summer Program 2014, pp. 169178. Center of Turbulence Research, Stanford University.Google Scholar
Courtine, E., Selle, L. & Poinsot, T. 2015 DNS of intrinsic thermoacoustic modes in laminar premixed flames. Combust. Flame 162, 43314341.CrossRefGoogle Scholar
Crighton, D. G., Dowling, A. P., Ffowcs Williams, J. E., Heckl, M. & Leppington, F. G. 1992 Modern Methods in Analytical Acoustics (Lecture Notes). Springer.CrossRefGoogle Scholar
Crocco, L. 1951 Aspects of combustion instability in liquid propellant rocket motors. Part I. J. Am. Rocket Soc. 21, 163178.Google Scholar
Crocco, L. 1952 Aspects of combustion instability in liquid propellant rocket motors. Part II. J. Am. Rocket Soc. 22, 716.Google Scholar
Crocco, L. & Cheng, S. L. 1956 Theory of Combustion Instability in Liquid Propellant Rocket Motors. Butterworths Scientific; Interscience.Google Scholar
Culick, F. 2001 Dynamics of Combustion Systems: Fundamentals, Acoustics and Control. NASA Glenn Research Center.Google Scholar
Culick, F. E. C.2006 Unsteady Motions in Combustion Chambers for Propulsion Systems, AGARDograph, NATO/RTO-AG-AVT-039.Google Scholar
Cuquel, A., Durox, D. & Schuller, T. 2013a Impact of flame base dynamics on the nonlinear frequency response of conical flames. C. R. Méc. 341, 171180.CrossRefGoogle Scholar
Cuquel, A., Durox, D. & Schuller, T. 2013b Scaling the flame transfer function of confined premixed conical flames. Proc. Combust. Inst. 34, 10071014.CrossRefGoogle Scholar
De Goey, L. P. H., van Oijen, J. A., Kornilov, V. N. & ten Thije Boonkkamp, J. H. M. 2011 Propagation, dynamics and control of laminar premixed flames. Proc. Combust. Inst. 33, 863886.CrossRefGoogle Scholar
Dowling, A. P. 1999 A kinematic model of ducted flame. J. Fluid Mech. 394, 5172.CrossRefGoogle Scholar
Dowling, A. P. & Morgans, A. S. 2005 Feedback control of combustion instabilities. Annu. Rev. Fluid Mech. 37, 151182.CrossRefGoogle Scholar
Duchaine, F., Boudy, F., Durox, D. & Poinsot, T. 2011 Sensitivity of flame transfer functions of laminar flames. Combust. Flame 158, 23842394.CrossRefGoogle Scholar
Ducruix, S., Durox, D. & Candel, S. 2000 Theoretical and experimental determinations of the transfer function of a laminar premixed flame. Proc. Combust. Inst. 28, 765773.CrossRefGoogle Scholar
Ducruix, S., Schuller, T., Durox, D. & Candel, S. 2003 Combustion dynamics and instabilities: Elementary coupling and driving mechanisms. J. Propul. Power 19, 722734.CrossRefGoogle Scholar
Durox, D., Schuller, T. & Candel, S. 2002 Self-sustained oscillations of a premixed impinging jet flame on a plate. Proc. Combust. Inst. 29, 6975.CrossRefGoogle Scholar
Durox, D., Schuller, T. & Candel, S. 2005 Combustion dynamics of inverted conical flames. Proc. Combust. Inst. 30, 17171724.CrossRefGoogle Scholar
Durox, D., Schuller, T., Noiray, N. & Candel, S. 2009 Experimental analysis of nonlinear flame transfer functions for different flame geometries. Proc. Combust. Inst. 32, 13911398.CrossRefGoogle Scholar
Emmert, T., Bomberg, S., Jaensch, S. & Polifke, W. 2015 Intrinsic thermoacoustic instability of premixed flames. Combust. Flame 162, 7585.CrossRefGoogle Scholar
Emmert, T., Bomberg, S., Jaensch, S. & Polifke, W. 2017 Acoustic and intrinsic thermoacoustic modes of a premixed combustor. Proc. Combust. Inst. 36, 38353842.CrossRefGoogle Scholar
Fleifil, M., Annaswamy, A. M., Ghoneim, Z. A. & Ghoniem, A. F. 1996 Response of a laminar premixed flame to flow oscillations: a kinematic model and thermoacoustic instability results. Combust. Flame 106, 487510.CrossRefGoogle Scholar
Garby, R., Selle, L. & Poinsot, T. 2013 Large-eddy simulation of combustion instabilities in a variable-length combustor. C. R. Méc. 341, 220229.CrossRefGoogle Scholar
Ghani, A., Steinbacher, T., Albayrak, A. & Polifke, W. 2019 Intrinsic thermoacoustic feedback loop in turbulent spray flames. Combust. Flame 205, 2232.CrossRefGoogle Scholar
Ghirardo, G. & Juniper, M. P. 2013 Azimuthal instabilities in annular combustors: standing and spinning modes. Proc. R. Soc. Lond. A 469, 20130232.CrossRefGoogle Scholar
Ghirardo, G., Juniper, M. P. & Moeck, J. P. 2016 Weakly nonlinear analysis of thermoacoustic instabilities in annular combustors. J. Fluid Mech. 805, 5287.CrossRefGoogle Scholar
Gicquel, L. Y. M., Staffelbach, G. & Poinsot, T. 2012 Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782817.CrossRefGoogle Scholar
Hemchandra, S. 2012 Premixed flame response to equivalence ratio fluctuations: comparison between reduced order modeling and detailed computations. Combust. Flame 159, 35303543.CrossRefGoogle Scholar
Hoeijmakers, M., Kornilov, V. N., Arteaga, I. L., de Goey, L. P. H. & Nijmeijer, H. 2016 Flame dominated thermoacoustic instabilities in a system with high acoustic losses. Combust. Flame 169, 209215.CrossRefGoogle Scholar
Hoeijmakers, M., Kornilov, V. N., Arteaga, I. L., de Goey, P. & Nijmeijer, H. 2014 Intrinsic instability of flame–acoustic coupling. Combust. Flame 161, 28602867.CrossRefGoogle Scholar
Howe, M. S. 1998 Acoustics of Fluid–Structure Interactions. Cambridge University Press.CrossRefGoogle Scholar
Huang, Y. & Yang, V. 2009 Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Combust. Sci. 35, 293384.CrossRefGoogle Scholar
Hubbard, S. & Dowling, A. P.1998 Acoustic instabilities in premix burners. AIAA Paper 98-2272.CrossRefGoogle Scholar
Hubbard, S. & Dowling, A. P. 2001 Acoustic resonances of an industrial gas turbine combustion system. Trans. ASME J. Engng Gas Turbines Power 123, 766773.CrossRefGoogle Scholar
Hussain, F. & Jeong, J. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.Google Scholar
Johnson, C. E., Neumeier, Y., Lieuwen, T. & Zinn, B. T. 2000 Experimental determination of the stability margin of a combustor using exhaust flow and fuel injection rate modulations. Proc. Combust. Inst. 28, 757763.CrossRefGoogle Scholar
Juniper, M. P. & Sujith, R. I. 2018 Sensitivity and nonlinearity of thermoacoustic oscillations. Annu. Rev. Fluid Mech. 50, 661689.CrossRefGoogle Scholar
Kartheekeyan, S. & Chakravarthy, S. 2006 An experimental investigation of an acoustically exrefd laminar premixed flame. Combust. Flame 146, 513529.CrossRefGoogle Scholar
Kedia, K. S., Altay, H. M. & Ghoniem, A. F. 2011 Impact of flame-wall interaction on premixed flame dynamics and transfer function characteristics. Proc. Combust. Inst. 33, 11131120.CrossRefGoogle Scholar
Kedia, K. & Ghoniem, A. F. 2013 An analytical model for the prediction of the dynamic response of premixed flames stabilized on a heat-conducting perforated plate. Proc. Combust. Inst. 34, 921928.CrossRefGoogle Scholar
Kedia, K. S. & Ghoniem, A. F. 2015 The blow-off mechanism of a bluff-body stabilized laminar premixed flame. Combsut. Flame 162, 13041315.CrossRefGoogle Scholar
Keller, J. J. 1995 Thermoacoustic oscillations in combustion chambers of gas turbines. AIAA J. 33, 22802287.CrossRefGoogle Scholar
Keller, J. O. & Daily, J. W. 1985 The effects of highly exothermic chemical reaction on a two-dimensional mixing layer. AIAA J. 23, 19371945.CrossRefGoogle Scholar
Kornilov, V. N., Schreel, K. R. A. M. & de Goey, L. P. H. 2007 Experimental assessment of the acoustic response of laminar premixed bunsen flames. Proc. Combust. Inst. 31, 12391246.CrossRefGoogle Scholar
Krebs, W., Flohr, P., Prade, B. & Hoffmann, S. 2002 Thermoacoustic stability chart for high intensity. Combust. Sci. Technol. 174, 99128.CrossRefGoogle Scholar
Krebs, W., Krediet, H., Portillo, E., Hermeth, S., Poinsot, T., Schimek, S. & Paschereit, C. O. 2013 Comparison of nonlinear to linear thermoacoustic stability analysis of a gas turbine combustion system. Trans. ASME J. Engng Gas Turbines Power 135, 081503.CrossRefGoogle Scholar
Lacoste, D., Moeck, J. P., Roberts, W. L., Chung, S. H. & Cha, M. S. 2017 Analysis of the step responses of laminar premixed flames to forcing by non-thermal plasma. Proc. Combust. Inst. 36, 41454153.CrossRefGoogle Scholar
Larea, D., Schuller, T., Prieur, K., Durox, D., Camporeale, S. M. & Candel, S. 2017 Flame describing function analysis of spinning and standing modes in an annular combustor and comparison with experiments. Combust. Flame 184, 136152.CrossRefGoogle Scholar
Lauvergne, R. & Egolfopoulos, F. 2000 Unsteady response of C3H8 laminar premixed flames submitted to mixture composition oscillations. Proc. Combust. Inst. 28, 18411850.CrossRefGoogle Scholar
Lee, D. S. & Anderson, T. J. 1999 Measurement of fuel/air-acoustic coupling in lean premixed combustion systems. In 37th AIAA Aerospace Sciences Meeting and Exhibit, 11–14 January 1999, Reno, Nevada, USA. Available at: https://doi.org/10.2514/6.1999-450.Google Scholar
Lee, D. H. & Lieuwen, T. C. 2003 Premixed flame kinematics in a longitudinal acoustic field. J. Propul. Power 19, 837846.CrossRefGoogle Scholar
Lee, J. G., Kim, K. & Santavicca, D. A. 2000 Measurement of equivalence ratio fluctuation and its effect on heat release during unstable combustion. Proc. Combust. Inst. 28, 415421.CrossRefGoogle Scholar
Lieuwen, T. 2005 Nonlinear kinematic response of premixed flames to harmonic velocity disturbances. Proc. Combust. Inst. 30, 17251732.CrossRefGoogle Scholar
Lieuwen, T., Torres, H., Johnson, C. & Zinn, B. T. 2001 A mechanism of combustion instability in lean premixed gas turbine combustors. Trans. ASME J. Engng Gas Turbines Power 123, 182189.CrossRefGoogle Scholar
Lieuwen, T. & Zinn, B. T. 1998 The role of equivalence ratio oscillations in driving combustion instabilities in low NOx gas turbines. Proc. Combust. Inst. 27, 18091816.CrossRefGoogle Scholar
Lieuwen, T. C. 2012 Unsteady Combustor Physics. Cambridge University Press.CrossRefGoogle Scholar
Lieuwen, T. C. & Yang, V. 2005 Combustion Instabilities in Gas Turbines, Operational Experience, Fundamental Mechanisms, and Modeling, Progress in Astronautics and Aeronautics, vol. 210. American Institute of Aeronautics and Astronautics.Google Scholar
Mariappan, S. & Sujith, R. I. 2011 Modelling nonlinear thermoacoustic instability in an electrically heated Rijke tube. J. Fluid Mech. 680, 511533.CrossRefGoogle Scholar
McManus, K. R., Poinsot, T. & Candel, S. 1993 A review of active control of combustion instabilities. Prog. Energy Combust. Sci. 19, 129.CrossRefGoogle Scholar
Mejia, D., Selle, L., Bazile, R. & Poinsot, T. 2014 Wall-temperature effects on flame response to acoustic oscillations. Proc. Combust. Inst. 35, 32013208.CrossRefGoogle Scholar
Mercier, R., Guiberti, T. F., Chatelier, A., Durox, D., Gicquel, O., Darabiha, N., Schuller, T. & Fiorina, B. 2016 Experimental and numerical investigation of the influence of thermal boundary conditions on premixed swirling flame stabilization. Combust. Flame 171, 4258.CrossRefGoogle Scholar
Miguel-Brebion, M.2017 Joint numerical and experimental study of thermo-acoustic instabilities. PhD thesis, Doctorat de l’Univeristé de Toulouse.Google Scholar
Miguel-Brebion, M., Mejia, D., Xavier, P., Duchaine, F., Bedat, B., Selle, L. & Poinsot, T. 2016 Joint experimental and numerical study of the influence of flame holder temperature on the stabilization of a laminar methane flame on a cylinder. Combust. Flame 172, 153161.CrossRefGoogle Scholar
Moeck, J. P., Durox, D., Schuller, T. & Candel, S. 2019 Nonlinear thermoacoustic mode synchronization in annular combustors. Proc. Combust. Inst. 37, 53435350.CrossRefGoogle Scholar
Morse, P. M. & Ingard, K. U. 1986 Theoretical Acoustics. Princeton University Press.Google Scholar
Noiray, N.2007 Linear and nonlinear stability analysis of acoustic-combustion instabilities, application to multipoint injection systems and passive control strategies. PhD thesis, Ecole Centrale Paris.Google Scholar
Noiray, N., Bothien, M. & Schuermans, B. 2011 Investigation of azimuthal staging concepts in annular gas turbines. Combust. Theor. Model. 15, 585606.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2006 Self-induced instabilities of premixed flames in a multiple injection configuration. Combust. Flame 145, 435446.CrossRefGoogle Scholar
Noiray, N., Durox, D., Schuller, T. & Candel, S. 2008 A unified framework for nonlinear combustion instability analysis based on the flame describing function. J. Fluid Mech. 615, 139167.CrossRefGoogle Scholar
O’Connor, J., Acharya, V. S. & Lieuwen, T. C. 2015 Transverse combustion instabilities: acoustic, fluid mechanic, and flame processes. Prog. Energy Combust. Sci. 49, 139.CrossRefGoogle Scholar
Orchini, A., Silva, C. F., Mensah, G. A. & Moeck, J. P. 2020 Thermoacoustic modes of intrinsic and acoustic origin and their interplay with exceptional points. Combust. Flame 211, 8395.CrossRefGoogle Scholar
Palies, P.2010 Premixed swirling flame dynamics. PhD thesis, Ecole Centrale Paris.Google Scholar
Palies, P., Durox, D., Schuller, T. & Candel, S. 2011 Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combust. Flame 158, 19801991.CrossRefGoogle Scholar
Paschereit, C. O., Polifke, W., Schuermans, B. & Mattson, O. 2002 Measurement of transfer matrices and source terms of premixed flames. Trans. ASME J. Engng Gas Turbines Power 124, 239247.CrossRefGoogle Scholar
Peracchio, A. A. & Proscia, W. M. 1999 Nonlinear heat-release/acoustic interactions in a gas turbine combustor. Trans. ASME J. Engng Gas Turbines Power 121, 415421.CrossRefGoogle Scholar
Peters, M. C. A., Hirschberg, A., Reijnen, A. J. & Wijnands, A. P. J. 1993 Damping and reflection coefficient measurements for an open pipe at low mach and low Helmholtz numbers. J. Fluid Mech. 256, 499534.CrossRefGoogle Scholar
Poinsot, T. J. 2017 Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 36, 128.CrossRefGoogle Scholar
Poinsot, T., Trouvé, A., Veynante, D., Candel, S. & Esposito, E. 1987 Vortex driven acoustically coupled combustion instabilities. J. Fluid Mech. 177, 265292.CrossRefGoogle Scholar
Poinsot, T. & Veynante, D. 2012 Theoretical and Numerical Combustion, 3rd edn. Available at: www.cerfacs.fr/elearning.Google Scholar
Polifke, W. & Lawn, C. J. 2007 On the low-frequency limit of flame transfer functions. Combust. Flame 151, 437451.CrossRefGoogle Scholar
Preetham, Santosh, H. & Lieuwen, T. 2008 Dynamics of laminar premixed flames forced by harmonic velocity disturbances. J. Propul. Power 24, 13901402.CrossRefGoogle Scholar
Preetham, Kumar, T. S. & Lieuwen, T.2006 Response of premixed flames to flow oscillations: unsteady curvature effects. AIAA Paper 2006-0960.CrossRefGoogle Scholar
Prieur, K., Durox, D., Schuller, T. & Candel, S. 2017 A hysteresis phenomenon leading to spinning or standing azimuthal instabilities in an annular combustor. Combust. Flame 175, 283291.CrossRefGoogle Scholar
Prieur, K., Durox, D., Schuller, T. & Candel, S. 2018 Strong azimuthal combustion instabilities in a spray annular chamber with intermittent partial blow-off. Trans. ASME J. Engng Gas Turbines Power 140, 031503.CrossRefGoogle Scholar
Putnam, A. 1971 Combustion Driven Oscillations in Industry. Elsevier.Google Scholar
Ratner, A., Pun, W., Palm, S. L. & Culick, F. E. C. 2002 Phase-resolved NO planar laser-induced fluorescence of a jet flame in an acoustic chamber with excitation at frequencies lower than 60 Hz. Proc. Combust. Inst. 29, 8590.CrossRefGoogle Scholar
Raun, R. & Beckstead, M. 1993 A numerical model for temperature gradient and particle effects on Rijke burner oscillations. Combust. Flame 94, 124.CrossRefGoogle Scholar
Raun, R. L., Beckstead, M. W., Finlinson, J. C. & Brooks, K. P. 1993 A review of Rijke tubes, Rijke burners and related devices. Prog. Energy Combust. Sci. 19, 313364.CrossRefGoogle Scholar
Rayleigh, L. 1878 The explanation of certain acoustic phenomena. Nature 18, 319321.CrossRefGoogle Scholar
Richards, G. A. & Janus, M. C. 1998 Characterization of oscillations during premix gas turbine combustion. Trans. ASME J. Engng Gas Turbines Power 120, 294302.CrossRefGoogle Scholar
Rienstra, S. W. & Hirschberg, A.2018 An Introduction to Acoustics. Eindhoven University of Technology.Google Scholar
Rijke, P. L. 1859a Notice of a new method of causing a vibration of the air contained in a tube open at both ends. Phil. Mag. 17, 419422.CrossRefGoogle Scholar
Rijke, P. L. 1859b Notiz uber eine neue Art, die in einer an beiden Enden offenen Röhre enthaltene Luft in Schwingungen zu versetzen. Ann. Phys. 107, 339343.Google Scholar
Rook, R., de Goey, L. P. H., Somers, L. M. T., Schreel, K. R. A. M. & Parchen, R. 2002 Response of burner-stablized flat flames to acoustic perturbations. Combust. Theor. Model. 6, 223242.CrossRefGoogle Scholar
Samaniego, J.-M., Yip, B., Poinsot, T. & Candel, S. 1993 Low-frequency combustion instability mechanism in a side-dump combustor. Combust. Flame 94, 363381.CrossRefGoogle Scholar
Sattelmayer, T. 2003 Influence of the combustor aerodynamics on combustion instabilities from equivalence ratio fluctuations. Trans. ASME J. Engng Gas Turbines Power 125, 1119.CrossRefGoogle Scholar
Saurabh, A., Moeck, J. P. & Paschereit, C. O. 2017 Swirl flame response to simultaneous axial and transverse velocity fluctuations. Trans. ASME J. Engng Gas Turbines Power 139, 061502.CrossRefGoogle Scholar
Schildmacher, K.-U., Koch, R. & Bauer, H.-J. 2006 Experimental characterization of premixed flame instabilities of a model gas turbine burner. Flow Turbul. Combust. 76, 177197.CrossRefGoogle Scholar
Schreel, K. R. A. M., Rook, R. & de Goey, L. P. H. 2002 The acoustic response of burner stabilized premixed flat flames. Proc. Combust. Inst. 29, 115122.CrossRefGoogle Scholar
Schuermans, B., Guethe, F., Pennel, D., Guyot, D. & Paschereit, C. O. 2010 Thermoacoustic modeling of a gas turbine using transfer functions measured at full engine pressure. Trans. ASME J. Engng Gas Turbines Power 132, 11503.CrossRefGoogle Scholar
Schuller, T.2003 Mécanismes de couplage dans les interactions acoustique-combustion. PhD thesis, Ecole Centrale Paris.Google Scholar
Schuller, T., Durox, D. & Candel, S. 2003a Self-induced combustion oscillations of laminar premixed flames stabilized on annular burners. Combust. Flame 135, 525537.CrossRefGoogle Scholar
Schuller, T., Durox, D. & Candel, S. 2003b A unified model for the prediction of laminar flame transfer functions: comparisons between conical and V-flame dynamics. Combust. Flame 134, 2134.CrossRefGoogle Scholar
Schuller, T., Durox, D., Palies, P. & Candel, S. 2012 Acoustic decoupling of longitudinal modes in generic combustion systems. Combust. Flame 159, 19211931.CrossRefGoogle Scholar
Schwarz, H., Zimmer, L., Durox, D. & Candel, S. 2010 Detailed measurements of equivalence ratio modulations in premixed flames using laser Rayleigh scattering and absorption spectroscopy. Exp. Fluids 49, 809821.CrossRefGoogle Scholar
Sengissen, A., Kampen, J. F. V., Huls, R., Stoffels, G., Kok, J. B. W. & Poinsot, T. 2007 LES and experimental studies of cold and reacting flows in a swirled partially premixed burner with and without fuel modulation. Combust. Flame 150, 4053.CrossRefGoogle Scholar
Shreekrishna, Hemchandra, S. & Lieuwen, T. 2010 Premixed flame response to equivalence ratio perturbations. Combust. Theor. Model. 14, 681714.CrossRefGoogle Scholar
Silva, C., Emmert, T., Jaensch, S. & Polifke, W. 2015 Numerical study on intrinsic thermoacoustic instability of a laminar premixed flame. Combust. Flame 162, 33703378.CrossRefGoogle Scholar
Silva, C., Merk, M., Komarek, T. & Polifke, W. 2017 The contribution of intrinsic thermoacoustic feedback to combustion noise and resonances of a confined turbulent premixed flame. Combust. Flame 182, 269278.CrossRefGoogle Scholar
Steinbacher, T., Albayrak, A., Ghani, A. & Polifke, W. 2019 Consequences of flame geometry for the acoustic response of premixed flames. Combust. Flame 199, 411428.CrossRefGoogle Scholar
Strahle, W. C. 1978 Combustion noise. Prog. Energy Combust. Sci. 4, 157176.CrossRefGoogle Scholar
Taraneh, S., Schmid, P. J., Richecoeur, F. & Durox, D. 2015 Parametrized data-driven decomposition for bifurcation analysis, with application to thermo-acoustically unstable systems. Phys. Fluids 27, 037102.Google Scholar
Truffin, K. & Poinsot, T. 2005 Comparison and extension of methods for acoustic identification of burners. Combust. Flame 142, 388400.CrossRefGoogle Scholar
Venkataraman, K. K., Preston, L. H., Simons, D. W., Lee, B. J., Lee, J. G. & Santavicca, D. A. 1999 Mechanism of combustion instability in a lean premixed dump combustor. J. Propul. Power 15, 909918.CrossRefGoogle Scholar
Weigand, P., Meier, W., Duan, X. & Aigner, M. 2007 Laser-based investigations of thermoacoustic instabilities in a lean premixed gas turbine model. Trans. ASME J. Engng Gas Turbines Power 129, 664671.CrossRefGoogle Scholar
Williams, F. A. 1985 Combustion Theory. Benjamin Cummings.Google Scholar
Wolf, P., Staffelbach, G., Gicquel, L. Y. M., Muller, J. D. & Poinsot, T. 2012 Acoustic and large eddy simulation studies of azimuthal modes in annular combustion chambers. Combust. Flame 159, 33983413.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 103
Total number of PDF views: 516 *
View data table for this chart

* Views captured on Cambridge Core between 01st May 2020 - 4th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Dynamics and control of premixed combustion systems based on flame transfer and describing functions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Dynamics and control of premixed combustion systems based on flame transfer and describing functions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Dynamics and control of premixed combustion systems based on flame transfer and describing functions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *