Skip to main content Accessibility help
×
Home

Differential formulation of the viscous history force on a particle for efficient and accurate computation

Published online by Cambridge University Press:  16 April 2018

M. Parmar
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
S. Annamalai
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
S. Balachandar
Affiliation:
Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611, USA
A. Prosperetti
Affiliation:
Department of Mechanical Engineering, University of Houston, TX 77204-4006, USA Physics of Fluids Group, Department of Science and Technology, J.M. Burgers Centre for Fluid Dynamics, University of Twente, 7500 AE Enschede, The Netherlands
Corresponding
E-mail address:

Abstract

It is well known that the computation of the Basset-like history force is very demanding in terms of CPU and memory requirements, since it requires the evaluation of a history integral. We use the recent rational theory of Beylkin & Monzón (Appl. Comput. Harmon. Anal., vol. 19, 2005, pp. 17–48) to approximate the history kernel in the form of exponential sums to reformulate the viscous history force in a differential form. This theory allows us to approximate the history kernel in terms of exponential sums to any desired order of accuracy. This removes the need for long-time storage of the acceleration histories of the particle and the fluid. The proposed differential form approximation is applied to compute the history force on a spherical particle in a synthetic turbulent flow and a wall-bounded turbulent channel flow. Particles of various diameters are considered, and results obtained using the present technique are in reasonable agreement with those achieved using the full history integral.

Type
JFM Papers
Copyright
© 2018 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Balachandar, S. 2009 A scaling analysis for point-particle approaches to turbulent multiphase flows. Intl J. Multiphase Flow 35, 801810.10.1016/j.ijmultiphaseflow.2009.02.013CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.10.1146/annurev.fluid.010908.165243CrossRefGoogle Scholar
Basset, A. B. 1888 Treatise on Hydrodynamics. Deighton, Bell and Company.Google Scholar
Beylkin, G. & Monzón, L. 2005 On approximation of functions by exponential sums. Appl. Comput. Harmon. Anal. 19, 1748.10.1016/j.acha.2005.01.003CrossRefGoogle Scholar
Bombardelli, F. A., Gonzalez, A. E. & Nino, Y. I. 2008 Computation of the particle Basset force with a fractional-derivative approach. J. Hydraul. Eng.-ASCE 134 (10), 15131520.10.1061/(ASCE)0733-9429(2008)134:10(1513)CrossRefGoogle Scholar
Boussinesq, J. 1885 Sur la résistance qu’oppose un liquide indéfini au repos au mouvement varié d’une sphère solide. C. R. Acad. Sci. Paris 100, 935937.Google Scholar
Brush, L. M., Ho, H. W. & Yen, B. C. 1964 Accelerated motion of a sphere in a viscous fluid. J. Hydraul. Engng 90, 149160.Google Scholar
Clift, R., Grace, J. R. & Weber, M. E. 1978 Bubbles, Drops and Particles. Academic.Google Scholar
Daitche, Anton 2013 Advection of inertial particles in the presence of the history force: higher order numerical schemes. J. Comput. Phys. 254, 93106.10.1016/j.jcp.2013.07.024CrossRefGoogle Scholar
Dorgan, A. J. & Loth, E. 2007 Efficient calculation of the history force at finite Reynolds numbers. Intl J. Multiphase Flow 33 (8), 833848.10.1016/j.ijmultiphaseflow.2007.02.005CrossRefGoogle Scholar
Elghannay, H. A. & Tafti, D. K. 2016 Development and validation of a reduced order history force model. Intl J. Multiphase Flow 85, 284297.10.1016/j.ijmultiphaseflow.2016.06.019CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2001 A fast Eulerian method for disperse two-phase flow. Intl J. Multiphase Flow 27 (7), 11991226.10.1016/S0301-9322(00)00069-0CrossRefGoogle Scholar
Ferry, J. & Balachandar, S. 2002 Equilibrium expansion for the Eulerian velocity of small particles. Powder Technol. 125 (2–3), 131139.10.1016/S0032-5910(01)00499-5CrossRefGoogle Scholar
Ferry, J., Rani, S. L. & Balachandar, S. 2003 A locally implicit improvement of the equilibrium Eulerian method. Intl J. Multiphase Flow 29 (6), 869891.10.1016/S0301-9322(03)00064-8CrossRefGoogle Scholar
van Hinsberg, M. A. T., Ten Thije Boonkkamp, J. H. M. & Clercx, H. J. H. 2011 An efficient, second order method for the approximation of the Basset history force. J. Comput. Phys. 230 (4), 14651478.10.1016/j.jcp.2010.11.014CrossRefGoogle Scholar
Landau, L. D. & Lifschitz, E. M. 1987 Fluid Mechanics, Course of Theroretical Physics, vol. 6. Butterworth-Heinemann.Google Scholar
Lee, H., Ha, M. Y. & Balachandar, S. 2012 Work-based criterion for particle motion and implication for turbulent bed-load transport. Phys. Fluids 24 (11), 116604.10.1063/1.4767541CrossRefGoogle Scholar
Lee, H. & Hsu, I. 1994 Investigation of saltating particle motion. J. Hydraul. Engng 120 (7), 831845.10.1061/(ASCE)0733-9429(1994)120:7(831)CrossRefGoogle Scholar
Ling, Y., Parmar, M. & Balachandar, S. 2013 A scaling analysis of added-mass and history forces and their coupling in dispersed multiphase flows. Intl J. Multiphase Flow 57, 102114.10.1016/j.ijmultiphaseflow.2013.07.005CrossRefGoogle Scholar
Longhorn, A. L. 1952 The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. Q. J. Mech. Appl. Maths 5, 6481.10.1093/qjmam/5.1.64CrossRefGoogle Scholar
Lovalenti, P. M. & Brady, J. F. 1993a The force on a sphere in a uniform-flow with small-amplitude oscillations at finite Reynolds-number. J. Fluid Mech. 256, 607614.10.1017/S0022112093002897CrossRefGoogle Scholar
Lovalenti, P. M. & Brady, J. F. 1993b The hydrodynamic force on a rigid particle undergoing arbitrary time-dependent motion at small Reynolds-number. J. Fluid Mech. 256, 561605.10.1017/S0022112093002885CrossRefGoogle Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a nonuniform flow. Phys. Fluids 26 (4), 883889.10.1063/1.864230CrossRefGoogle Scholar
Mei, R. 1993 History force on a sphere due to a step change in the free-stream velocity. Intl J. Multiphase Flow 19 (3), 509525.10.1016/0301-9322(93)90064-2CrossRefGoogle Scholar
Mei, R. W. & Adrian, R. J. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323341.10.1017/S0022112092003434CrossRefGoogle Scholar
Michaelides, E. E. 1992 A Novel way of computing the Basset term in unsteady multiphase flow computations. Phys. Fluids A 4 (7), 15791582.10.1063/1.858430CrossRefGoogle Scholar
Mordant, N. & Pinton, J. F. 2000 Velocity measurement of a settling sphere. Eur. Phys. J. B 18 (2), 343352.10.1007/PL00011074CrossRefGoogle Scholar
Nino, I. & Garcia, M. 1998 Using Lagrangian particle saltation observations for bedload sediment transport modelling. Hydrol. Process. 12, 11971218.10.1002/(SICI)1099-1085(19980630)12:8<1197::AID-HYP612>3.0.CO;2-U3.0.CO;2-U>CrossRefGoogle Scholar
Parmar, M., Balachandar, S. & Haselbacher, A. 2012a Equation of motion for a drop or bubble in viscous compressible flows. Phys. Fluids 24, 056103.10.1063/1.4719696CrossRefGoogle Scholar
Parmar, M., Balachandar, S. & Haselbacher, A. 2012b Equation of motion for a sphere in non-uniform compressible flows. J. Fluid Mech. 699, 352375.10.1017/jfm.2012.109CrossRefGoogle Scholar
Parmar, M., Haselbacher, A. & Balachandar, S. 2008 On the unsteady inviscid force on cylinders and spheres in subcritical compressible flow. Phil. Trans. R. Soc. Lond. A 366 (1873), 21612175.10.1098/rsta.2008.0027CrossRefGoogle ScholarPubMed
Parmar, M., Haselbacher, A. & Balachandar, S. 2011 Generalized Basset–Boussinesq–Oseen equation for unsteady forces on a sphere in a compressible flow. Phys. Rev. Lett. 106 (8), 084501.10.1103/PhysRevLett.106.084501CrossRefGoogle Scholar
Prosperetti, A. 2011 Advanced Mathematics for Applications. Cambridge University Press.Google Scholar
Schmeeckle, M. W. & Nelson, J. M. 2003 Direct numerical simulation of bedload transport using a local, dynamic boundary condition. Sedimentology 50, 279301.10.1046/j.1365-3091.2003.00555.xCrossRefGoogle Scholar
Sobral, Y. D., Oliveira, T. F. & Cunha, F. R. 2007 On the unsteady forces during the motion of a sedimenting particle. Powder Technol. 178 (2), 129141.10.1016/j.powtec.2007.04.012CrossRefGoogle Scholar
Taylor, G. I. 1928 The forces on a body placed in a curved or converging stream of fluid. Proc. R. Soc. Lond. A 120 (785), 260283.Google Scholar
Tchen, C. M.1947 Mean value and correction problems connected with the motion of small particles suspended in a turbulent fluid. PhD thesis, Delft University, Hague.Google Scholar
Vojir, D. J. & Mchaelides, E. E. 1994 Effect of the history term on the motion of rigid spheres in a viscous-fluid. Intl J. Multiphase Flow 20 (3), 547556.10.1016/0301-9322(94)90028-0CrossRefGoogle Scholar
Wood, I. R. & Jenkins, B. S. 1973 A numerical study of the suspension of a non-buoyant particle in a turbulent stream. In Proceedings of the IAHR International Symposium on River Mechanics, vol. 1, pp. 431442. Asian Institute of Technology.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 22
Total number of PDF views: 329 *
View data table for this chart

* Views captured on Cambridge Core between 16th April 2018 - 22nd January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-4qfsd Total loading time: 0.289 Render date: 2021-01-22T13:52:24.776Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Differential formulation of the viscous history force on a particle for efficient and accurate computation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Differential formulation of the viscous history force on a particle for efficient and accurate computation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Differential formulation of the viscous history force on a particle for efficient and accurate computation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *