Skip to main content Accessibility help
×
Home
Hostname: page-component-684bc48f8b-v5sh4 Total loading time: 0.607 Render date: 2021-04-13T10:15:53.744Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation

Published online by Cambridge University Press:  22 June 2001

KAUSIK SARKAR
Affiliation:
Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
WILLIAM R. SCHOWALTER
Affiliation:
Department of Chemical Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

Abstract

The shape of a two-dimensional viscous drop deforming in several time-dependent flow fields, including that due to a potential vortex, has been studied. Vortex flow was approximated by linearizing the induced velocity field at the drop centre, giving rise to an extensional flow with rotating axes of stretching. A generalization of the potential vortex, a flow we have called rotating extensional flow, occurs when the frequency of revolution of the flow is varied independently of the shear rate. Drops subjected to this forcing flow exhibit an interesting resonance phenomenon. Finally we have studied drop deformation in an oscillatory extensional flow.

Calculations were performed at small but non-zero Reynolds numbers using an ADI front-tracking/finite difference method. We investigate the effects of interfacial tension, periodicity, viscosity ratio, and Reynolds number on the drop dynamics. The simulation reveals interesting behaviour for steady stretching flows, as well as time-dependent flows. For a steady extensional flow, the drop deformation is found to be non-monotonic with time in its approach to an equilibrium value. At sufficiently high Reynolds numbers, the drop experiences multiple growth–collapse cycles, with possible axes reversal, before reaching a final shape. For a vortex flow, the long-time deformation reaches a steady value, and the drop attains a revolving steady elliptic shape. For rotating extensional flows as well as oscillatory extensional flows, the maximum value of deformation displays resonance with variation in parameters, first increasing and then decreasing with increasing interfacial tension or forcing frequency. A simple ODE model with proper forcing is offered to explain the observed phenomena.

Type
Research Article
Copyright
© 2001 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 104 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 13th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Deformation of a two-dimensional drop at non-zero Reynolds number in time-periodic extensional flows: numerical simulation
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *