Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 0.251 Render date: 2021-04-17T18:55:59.997Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

An explicit potential-vorticity-conserving approach to modelling nonlinear internal gravity waves

Published online by Cambridge University Press:  23 May 2002

ÁLVARO VIÚDEZ
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, UK
DAVID G. DRITSCHEL
Affiliation:
Mathematical Institute, University of St Andrews, St Andrews, UK

Abstract

This paper discusses a potential-vorticity-conserving approach to modelling nonlinear internal gravity waves in a rotating Boussinesq fluid. The focus of the work is on the pseudo-plane motion (motion in the x, z-plane), for which we present a broad range of numerical results. In this case there are two material coordinates, the density and the y-component of the velocity in the inertial frame of reference, which are related to the x and z displacements of fluid particles relative to a reference configuration. The amount of potential vorticity within a fluid region bounded by isosurfaces of these material coordinates is proportional to the area within this region, and is therefore conserved as well. Two new potentials, defined in terms of the displacements and combining the vorticity and density fields, are introduced as new dependent variables. These potentials entirely govern the dynamics of internal gravity waves for the linearized system when the basic state has uniform potential vorticity. The final system of equations consists of three prognostic equations (for the potential vorticity and the Laplacians of the two potentials) and one diagnostic equation, of Monge–Ampère type, for a third potential. This diagnostic equation arises from the nonlinear definition of potential vorticity. The ellipticity of the Monge–Ampère equation implies both inertial and static stability. In three dimensions, the three potentials form a vector, whose (three-dimensional) Laplacian is equal to the vorticity plus the gradient of the perturbation density.

Numerical simulations are carried out using a novel algorithm which directly evolves the potential vorticity, in a Lagrangian manner (following fluid particles), without diffusion. We present results which emphasize the way in which potential vorticity anomalies modify the characteristics of internal gravity waves, e.g. the propagation of internal wave packets, including reflection, refraction, and amplification. We also show how potential vorticity anomalies may generate internal gravity waves, along with the subsequent ‘geostrophic adjustment’ of the flow to a ‘balanced’ wave-less state. These examples, and the straightforward extension of the theoretical and numerical approach to three dimensions, point to a direct and accurate means to elucidate the role of potential vorticity in internal gravity wave interactions. As such, this approach may help a better understanding of the observed characteristics of internal gravity waves in the oceans.

Type
Research Article
Copyright
© 2002 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below.

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 48 *
View data table for this chart

* Views captured on Cambridge Core between September 2016 - 17th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

An explicit potential-vorticity-conserving approach to modelling nonlinear internal gravity waves
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

An explicit potential-vorticity-conserving approach to modelling nonlinear internal gravity waves
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

An explicit potential-vorticity-conserving approach to modelling nonlinear internal gravity waves
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *