Skip to main content Accessibility help
×
Home
Hostname: page-component-78dcdb465f-fqvcn Total loading time: 13.989 Render date: 2021-04-18T13:13:24.193Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Amplification of random wave run-up on the front face of a box driven by tertiary wave interactions

Published online by Cambridge University Press:  02 May 2019

W. Zhao
Affiliation:
Faculty of Engineering and Mathematical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
P. H. Taylor
Affiliation:
Faculty of Engineering and Mathematical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
H. A. Wolgamot
Affiliation:
Faculty of Engineering and Mathematical Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia
R. Eatock Taylor
Affiliation:
Department of Engineering Science, University of Oxford, OxfordOX1 3PJ, UK
Corresponding
E-mail address:

Abstract

Wave run-up phenomena driven by nonlinear wave interactions with a fixed rectangular box are investigated. Experiments are carried out in different types of uni-directional waves with normal incidence. Significant wave run-ups featuring tertiary interaction effects, similar to those reported by Molin et al. (J. Fluid Mech., vol. 528, 2005, pp. 323–354) for a fixed vertical plate, are observed in regular wave tests. Transient wave group tests are conducted for comparison, to facilitate the analysis of the tertiary interactions in irregular waves. The most striking observation is that the wave surface elevations at the centre of the front face of the fixed box can reach $4\times$ the incident waves even in irregular waves, much larger than the ${\sim}2\times$ predicted from linear theory and observed for the transient groups. The extra amplification builds up slowly and is localized on the weather side of the box. It is believed to result from tertiary interactions between the incident and reflected wave fields upstream, which induce a local lensing effect and thus wave focusing on the weather side. These interactions, though a nonlinear process, occur at the first harmonic quantities rather than high harmonics. Supporting evidence is extracted from random wave runs using NewWave analysis, where surface amplifications and phase lag – both key characteristics of tertiary wave interactions – are identified. The identification of these tertiary interactions in irregular waves is new, and may be of practical importance.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below.

References

Bingham, H. B., Fuhrman, D. R., Jamois, E. & Kimmoun, O. 2004 Nonlinear wave interaction with bottom-mounted structures by a high-order Boussinesq method. In Proceedings of the 18th International Workshop on Water Waves and Floating Bodies, March 28–31, Cortona, Italy, http://www.iwwwfb.org/Abstracts/iwwwfb19/iwwwfb19_03.pdf.Google Scholar
Boccotti, P. 1983 Some new results on statistical properties of wind waves. Appl. Ocean Res. 5 (3), 134140.CrossRefGoogle Scholar
Faltinsen, O. M., Newman, J. N. & Vinje, T. 1995 Nonlinear wave loads on a slender vertical cylinder. J. Fluid Mech. 289, 179198.CrossRefGoogle Scholar
Fitzgerald, C. J., Taylor, P. H., Eatock Taylor, R., Grice, J. & Zang, J. 2014 Phase manipulation and the harmonic components of ringing forces on a surface-piercing column. Proc. R. Soc. Lond. A 470 (2168), 20130847.CrossRefGoogle Scholar
Grice, J. R., Taylor, P. H. & Eatock Taylor, R. 2013 Near-trapping effects for multi-column structures in deterministic and random waves. Ocean Engng 58, 6077.CrossRefGoogle Scholar
Jamois, E., Fuhrman, D. R., Bingham, H. B. & Molin, B. 2006 A numerical study of nonlinear wave run-up on a vertical plate. Coast. Engng 53 (11), 929945.CrossRefGoogle Scholar
Jonathan, P. & Taylor, P. H. 1997 On irregular, nonlinear waves in a spread sea. J. Offshore Mech. Arctic Engng 119 (1), 3741.CrossRefGoogle Scholar
Lindgren, G. 1970 Some properties of a normal process near a local maximum. Ann. Math. Statist. 41, 18701883.CrossRefGoogle Scholar
Longuet-Higgins, M. S. & Phillips, O. M. 1962 Phase velocity effects in tertiary wave interactions. J. Fluid Mech. 12 (3), 333336.CrossRefGoogle Scholar
Malenica, S. & Molin, B. 1995 Third-harmonic wave diffraction by a vertical cylinder. J. Fluid Mech. 302, 203229.CrossRefGoogle Scholar
Molin, B., Kimmoun, O., Liu, Y., Remy, F. & Bingham, H. B. 2010 Experimental and numerical study of the wave run-up along a vertical plate. J. Fluid Mech. 654, 363386.CrossRefGoogle Scholar
Molin, B., Kimmoun, O., Remy, F. & Chatjigeorgiou, I. K. 2014 Third-order effects in wave–body interaction. Eur. J. Mech. (B/Fluids) 47, 132144.CrossRefGoogle Scholar
Molin, B., Remy, F. & Kimmoun, O. 2007 Second-order wave interaction with a vertical plate. J. Engng Maths 58 (1–4), 109119.CrossRefGoogle Scholar
Molin, B., Remy, F., Kimmoun, O. & Ferrant, P. 2003 Third-order interactions and wave run-up. In Proceedings of the 18th International Workshop on Water Waves and Floating Bodies, April 6–9, Le Croisic, France, http://www.iwwwfb.org/Abstracts/iwwwfb18/iwwwfb18_36.pdf.Google Scholar
Molin, B., Remy, F., Kimmoun, O. & Jamois, E. 2005 The role of tertiary wave interactions in wave-body problems. J. Fluid Mech. 528, 323354.CrossRefGoogle Scholar
Ohl, C. O. G., Eatock Taylor, R., Taylor, P. H. & Borthwick, A. G. L. 2001 Water wave diffraction by a cylinder array. Part 1. Regular waves. J. Fluid Mech. 442, 132.CrossRefGoogle Scholar
Phillips, O. M. 1981 Wave interactions – the evolution of an idea. J. Fluid Mech. 106, 215227.CrossRefGoogle Scholar
Santo, H., Taylor, P. H., Moreno, E. C., Stansby, P., Eatock Taylor, R., Sun, L. & Zang, J. 2017 Extreme motion and response statistics for survival of the three-float wave energy converter M4 in intermediate water depth. J. Fluid Mech. 813, 175204.CrossRefGoogle Scholar
Sun, L., Eatock Taylor, R. & Taylor, P. H. 2015 Wave driven free surface motion in the gap between a tanker and an FLNG barge. Appl. Ocean Res. 51, 331349.CrossRefGoogle Scholar
Zhao, W., Taylor, P. H., Wolgamot, H. A. & Eatock Taylor, R. 2018a Identifying linear and nonlinear coupling between fluid sloshing in tanks, roll of a barge and external free-surface waves. J. Fluid Mech. 844, 403434.CrossRefGoogle Scholar
Zhao, W., Taylor, P. H., Wolgamot, H. A. & Eatock Taylor, R. 2018b Linear viscous damping in random wave exrefd gap resonance at laboratory scale – NewWave analysis and reciprocity. J. Fluids Struct. 80, 5976.CrossRefGoogle Scholar
Zhao, W., Wolgamot, H. A., Taylor, P. H. & Eatock Taylor, R. 2017 Gap resonance and higher harmonics driven by focused transient wave groups. J. Fluid Mech. 812, 905939.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 37
Total number of PDF views: 170 *
View data table for this chart

* Views captured on Cambridge Core between 02nd May 2019 - 18th April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Amplification of random wave run-up on the front face of a box driven by tertiary wave interactions
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Amplification of random wave run-up on the front face of a box driven by tertiary wave interactions
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Amplification of random wave run-up on the front face of a box driven by tertiary wave interactions
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *